• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Learning the Optimal Transformation of Salient Features for Image Classification

    Thumbnail
    View/Open
    85923_1.pdf (248.2Kb)
    Author(s)
    Zhou, Jun
    Fu, Zhouyu
    Robles-Kelly, Antonio
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    In this paper, we address the problem of recovering an optimal salient image descriptor transformation for image classification. Our method involves two steps. Firstly, a binary salient map is generated to specify the regions of interest for subsequent image feature extraction. To this end, an optimal cut-off value is recovered by maximising Fisher's linear discriminant separability measure so as to separate the salient regions from the background of the scene. Next, image descriptors are extracted in the foreground region in order to be optimally transformed. The descriptor optimisation problem is cast in a regularised risk ...
    View more >
    In this paper, we address the problem of recovering an optimal salient image descriptor transformation for image classification. Our method involves two steps. Firstly, a binary salient map is generated to specify the regions of interest for subsequent image feature extraction. To this end, an optimal cut-off value is recovered by maximising Fisher's linear discriminant separability measure so as to separate the salient regions from the background of the scene. Next, image descriptors are extracted in the foreground region in order to be optimally transformed. The descriptor optimisation problem is cast in a regularised risk minimisation setting, in which the aim of computation is to recover the optimal transformation up to a cost function. The cost function is convex and can be solved using quadratic programming. The results on unsegmented Oxford Flowers database show that the proposed method can achieve classification performance that are comparable to those provided by alternatives elsewhere in the literature which employ pre-segmented images.
    View less >
    Conference Title
    2009 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2009)
    DOI
    https://doi.org/10.1109/DICTA.2009.28
    Copyright Statement
    © 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Computer vision
    Image processing
    Publication URI
    http://hdl.handle.net/10072/51724
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander