• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Simulating devil facial tumour disease outbreaks across empirically derived contact networks

    Author(s)
    Hamede, Rodrigo
    Bashford, Jim
    Jones, Menna
    McCallum, Hamish
    Griffith University Author(s)
    McCallum, Hamish
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    1. Understanding the nature and characteristics of contact heterogeneities is crucial for predicting the epidemic behaviour of infectious diseases. Nonetheless, few studies include contact heterogeneities when modelling disease outbreaks in wildlife, which differ in their population impact from human diseases. 2. We use empirical estimates of contact heterogeneities and network metrics to simulate outbreaks of devil facial tumour disease (DFTD), an extinction-threatening infectious cancer. We incorporate tuneable algorithms, with a range of transmission rates and latent periods of DFTD, to grow devil population networks ...
    View more >
    1. Understanding the nature and characteristics of contact heterogeneities is crucial for predicting the epidemic behaviour of infectious diseases. Nonetheless, few studies include contact heterogeneities when modelling disease outbreaks in wildlife, which differ in their population impact from human diseases. 2. We use empirical estimates of contact heterogeneities and network metrics to simulate outbreaks of devil facial tumour disease (DFTD), an extinction-threatening infectious cancer. We incorporate tuneable algorithms, with a range of transmission rates and latent periods of DFTD, to grow devil population networks capable of reproducing observed aspects of devil ecology, demographic and seasonal-based mixing preferences. The outputs of the network model are compared with a stochastic mean-field model, in which every individual is equally likely to pass or acquire infection through time. 3. Our network model predicts a lower epidemic threshold for DFTD compared with the stochastic mean-field model. While host extinction probabilities are similar in both models, the network model predicts faster devil extinction and higher DFTD extinction probabilities, particularly for intermediate levels of transmissibility. 4. While the time taken to devil extinction increases with the longer estimate of latent period, probabilities of both, disease and devil extinction, are greater with the shorter latent period. Host-pathogen coexistence is strictly subject to the longest plausible estimate of latent period and low transmissibility. 5.Synthesis and applications. In the particular case of DFTD, incorporating observed host network structure has only a modest effect on the outcome of the host pathogen interaction. In general, however, non-random network structure may have major implications for the management of wildlife diseases. Our results suggest that this is particularly likely for pathogens in which the probability of transmission given a contact is intermediate. Our approach provides a template for using empirically obtained data on contact networks to develop models to explore the extent to which network structure influences R0, the probability of extinction and the mean time until extinction.
    View less >
    Journal Title
    Journal of Applied Ecology
    Volume
    49
    Issue
    2
    DOI
    https://doi.org/10.1111/j.1365-2664.2011.02103.x
    Subject
    Population Ecology
    Veterinary Epidemiology
    Ecological Applications not elsewhere classified
    Ecological Applications
    Environmental Science and Management
    Ecology
    Publication URI
    http://hdl.handle.net/10072/51795
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander