Show simple item record

dc.contributor.authorogarth, W.
dc.contributor.authorRose, Calvin
dc.contributor.authorParlange, J.
dc.contributor.authorSander, G.
dc.contributor.authorCarey, G.
dc.contributor.editorR. Krzysztofowics, C. Neal, M. Sophocleous, G. Vachaud
dc.date.accessioned2017-05-03T11:02:19Z
dc.date.available2017-05-03T11:02:19Z
dc.date.issued2004
dc.date.modified2009-12-02T05:32:50Z
dc.identifier.issn00221694
dc.identifier.doi10.1016/j.jhydrol.2004.02.014
dc.identifier.urihttp://hdl.handle.net/10072/5195
dc.description.abstractDynamic changes take place in the nature of sediment eroded from bare soil at low slopes by rainfall impact when there is no inflow of water at the top of the eroding slope. This relates initially to fine soil sediment not settling back onto the soil after the rainfall impact. Coupled partial differential equations describing such dynamic changes have been solved numerically for a bed of soil, bounded at its upper end, and subject to a constant rainfall rate. This solution allows prediction of the change with time and downslope distance in the concentration and settling velocity (or size) characteristics of eroding sediment, allowing critical evaluation of the assumption of space-independent sediment characteristics made in prior approximate analytical solutions of the equations involved. Following the determination of as yet unpredictable soil-related parameters in the equations, the solution was tested by comparison with experimented data on two soils of contrasting structural stability, namely a vertosol [The Australian Soil Classification (1996)] and a aridisol. Investigations included the determination of a minimum number of sediment size classes required to adequately describe the settling velocity characteristics, based on the shape of the underlying basic settling velocity characteristic, which is used to predict the dynamics of sediment deposition. The effect on the solution of observed structural breakdown in soil aggregation due to rainfall impact was investigated, leading to more accurate predictions of the settling velocity characteristics of eroded sediment. Other sources of discrepancy between theory and observation remain to be determined
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier Science
dc.publisher.placeNetherlands
dc.publisher.urihttp://www.elsevier.com/wps/find/journaldescription.cws_home/503343/description#description
dc.relation.ispartofpagefrom229
dc.relation.ispartofpageto240
dc.relation.ispartofjournalJournal of Hydrology
dc.relation.ispartofvolume294
dc.subject.fieldofresearchcode300199
dc.titleSoil erosion due to rainfall impact with no inflow: a numerical solution with spatial and temporal effects of sediment settling velocity characteristics
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.date.issued2004
gro.hasfulltextNo Full Text
gro.griffith.authorRose, Calvin W.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record