• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A biofilm reactor-based approach for rapid on-line determination of biodegradable organic pollutants

    Author(s)
    Liu, Changyu
    Zhao, Huijun
    Zhong, Lijie
    Liu, Chang
    Jia, Jianbo
    Xu, Xiaolong
    Liu, Ling
    Dong, Shaojun
    Griffith University Author(s)
    Liu, Chang
    Zhao, Huijun
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    A new analytical approach utilizing a biofilm reactor (BFR) for rapid online determination of biochemical oxygen demand (BOD) was proposed and experimentally validated. The BFR was fabricated via a cultivation process using naturally occurring microbial seeds from locally collected wastewaters. The resultant BFR displays a remarkable rate of biodegradation towards a wide spectrum of organic substrates, capable of degrading over 20% of biodegradable organic substrates within 100 s. More importantly, the BFR exhibits a superior indiscriminative biodegradation feature, enabling a precise prediction of BOD values of total ...
    View more >
    A new analytical approach utilizing a biofilm reactor (BFR) for rapid online determination of biochemical oxygen demand (BOD) was proposed and experimentally validated. The BFR was fabricated via a cultivation process using naturally occurring microbial seeds from locally collected wastewaters. The resultant BFR displays a remarkable rate of biodegradation towards a wide spectrum of organic substrates, capable of degrading over 20% of biodegradable organic substrates within 100 s. More importantly, the BFR exhibits a superior indiscriminative biodegradation feature, enabling a precise prediction of BOD values of total biodegradable organics based on experimentally determined BOD values from partial degradation processes without a need for on-going calibration. The proposed approach was systematically validated using a range of individual organic substrates, their mixtures, synthetic samples and wastewaters. Highly significant linear correlations between the BFR and the standard BOD5 methods were obtained from diversified synthetic samples (r = 0.988, p = 0.000, n = 45) and wastewaters (r = 0.983, p = 0.000, n = 40). Near unity slope values of the principal axis of the correlation ellipse were obtained from all tested samples, suggesting both methods were essentially measuring the same BOD value. The reported method could be a useful online monitoring tool for determination of biodegradable organic pollutants.
    View less >
    Journal Title
    Biosensors and Bioelectronics
    Volume
    34
    DOI
    https://doi.org/10.1016/j.bios.2012.01.020
    Subject
    Analytical Chemistry not elsewhere classified
    Biomedical Engineering not elsewhere classified
    Analytical Chemistry
    Biomedical Engineering
    Nanotechnology
    Publication URI
    http://hdl.handle.net/10072/51989
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander