Sensitive detection of hazardous explosives via highly fluorescent crystalline porous aromatic frameworks

View/ Open
Author(s)
Yuan, Ye
Ren, Hao
Sun, Fuxing
Jing, Xiaofei
Cai, Kun
Zhao, Xiaojun
Wang, Yue
Wei, Yen
Zhu, Guangshan
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
A three-dimensional (3D) porous aromatic framework (PAF-14) with high fluorescence quantum yield was synthesized from luminescent monomer of tetra(4-dihydroxyborylphenyl)germanium (TBPGe) building blocks. The powder X-ray diffraction (PXRD) analysis of the experimental and simulated patterns indicate that PAF-14 is highly crystalline with ctn topology. The Argon sorption measurement indicates that PAF-14 possesses high surface area (Brunauer Emmet Teller surface area: 1288 m2 g-1). Significantly, the introduction of germanium into PAF-14 skeletons may bring about a low-lying lowest unoccupied molecular orbital (LUMO) and the ...
View more >A three-dimensional (3D) porous aromatic framework (PAF-14) with high fluorescence quantum yield was synthesized from luminescent monomer of tetra(4-dihydroxyborylphenyl)germanium (TBPGe) building blocks. The powder X-ray diffraction (PXRD) analysis of the experimental and simulated patterns indicate that PAF-14 is highly crystalline with ctn topology. The Argon sorption measurement indicates that PAF-14 possesses high surface area (Brunauer Emmet Teller surface area: 1288 m2 g-1). Significantly, the introduction of germanium into PAF-14 skeletons may bring about a low-lying lowest unoccupied molecular orbital (LUMO) and the crystalline polymeric backbones enhance the sensitivity of electron delocalization. Therefore the designed PAF-14 exhibits high fluorescence quenching ability for hazardous explosives, such as nitrobenzene, 2,4-DNT (2,4-dinitrotoluene) and TNT (2,4,6-trinitrotoluene).
View less >
View more >A three-dimensional (3D) porous aromatic framework (PAF-14) with high fluorescence quantum yield was synthesized from luminescent monomer of tetra(4-dihydroxyborylphenyl)germanium (TBPGe) building blocks. The powder X-ray diffraction (PXRD) analysis of the experimental and simulated patterns indicate that PAF-14 is highly crystalline with ctn topology. The Argon sorption measurement indicates that PAF-14 possesses high surface area (Brunauer Emmet Teller surface area: 1288 m2 g-1). Significantly, the introduction of germanium into PAF-14 skeletons may bring about a low-lying lowest unoccupied molecular orbital (LUMO) and the crystalline polymeric backbones enhance the sensitivity of electron delocalization. Therefore the designed PAF-14 exhibits high fluorescence quenching ability for hazardous explosives, such as nitrobenzene, 2,4-DNT (2,4-dinitrotoluene) and TNT (2,4,6-trinitrotoluene).
View less >
Journal Title
Journal of Materials Chemistry
Volume
22
Issue
47
Copyright Statement
© 2012 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Chemical sciences
Engineering
Other engineering not elsewhere classified