Saquinavir Inhibits the Malaria Parasite's Chloroquine Resistance Transporter
Author(s)
Martin, Rowena E
Butterworth, Alice S
Gardiner, Donald L
Kirk, Kiaran
McCarthy, James S
Skinner-Adams, Tina S
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
The antiretroviral protease inhibitors (APIs) ritonavir, saquinavir, and lopinavir, used to treat HIV infection, inhibit the growth of Plasmodium falciparum at clinically relevant concentrations. Moreover, it has been reported that these APIs potentiate the activity of chloroquine (CQ) against this parasite in vitro. The mechanism underlying this effect is not understood, but the degree of chemosensitization varies between the different APIs and, with the exception of ritonavir, appears to be dependent on the parasite exhibiting a CQ-resistant phenotype. Here we report a study of the role of the P. falciparum chloroquine ...
View more >The antiretroviral protease inhibitors (APIs) ritonavir, saquinavir, and lopinavir, used to treat HIV infection, inhibit the growth of Plasmodium falciparum at clinically relevant concentrations. Moreover, it has been reported that these APIs potentiate the activity of chloroquine (CQ) against this parasite in vitro. The mechanism underlying this effect is not understood, but the degree of chemosensitization varies between the different APIs and, with the exception of ritonavir, appears to be dependent on the parasite exhibiting a CQ-resistant phenotype. Here we report a study of the role of the P. falciparum chloroquine resistance transporter (PfCRT) in the interaction between CQ and APIs, using transgenic parasites expressing different PfCRT alleles and using the Xenopus laevis oocyte system for the heterologous expression of PfCRT. Our data demonstrate that saquinavir behaves as a CQ resistance reverser and that this explains, at least in part, its ability to enhance the effects of CQ in CQ-resistant P. falciparum parasites.
View less >
View more >The antiretroviral protease inhibitors (APIs) ritonavir, saquinavir, and lopinavir, used to treat HIV infection, inhibit the growth of Plasmodium falciparum at clinically relevant concentrations. Moreover, it has been reported that these APIs potentiate the activity of chloroquine (CQ) against this parasite in vitro. The mechanism underlying this effect is not understood, but the degree of chemosensitization varies between the different APIs and, with the exception of ritonavir, appears to be dependent on the parasite exhibiting a CQ-resistant phenotype. Here we report a study of the role of the P. falciparum chloroquine resistance transporter (PfCRT) in the interaction between CQ and APIs, using transgenic parasites expressing different PfCRT alleles and using the Xenopus laevis oocyte system for the heterologous expression of PfCRT. Our data demonstrate that saquinavir behaves as a CQ resistance reverser and that this explains, at least in part, its ability to enhance the effects of CQ in CQ-resistant P. falciparum parasites.
View less >
Journal Title
Antimicrobial agents and Chemotherapy
Volume
56
Issue
5
Subject
Microbiology
Medical microbiology
Medical parasitology
Pharmacology and pharmaceutical sciences