• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modeling Dune Response to an East Coast Low

    Author(s)
    Splinter, Kristen
    L. Palmsten, Margaret
    Griffith University Author(s)
    Splinter, Kristen
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Coastal dunes can act as a method of soft coastal protection against inundation and direct impact of waves during storms if they are substantially large enough in volume to withstand erosion without breaching. However, the time evolution of sand dunes under direct wave impact is not well understood and many available models require site specific calibration and have had limited verification at field scales. Here we test three models of varying complexity in their ability to predict both dry beach erosion volumes and dune to a retreat for an East Coast Low storm event that occurred on the Gold Coast, Australia. The process-based ...
    View more >
    Coastal dunes can act as a method of soft coastal protection against inundation and direct impact of waves during storms if they are substantially large enough in volume to withstand erosion without breaching. However, the time evolution of sand dunes under direct wave impact is not well understood and many available models require site specific calibration and have had limited verification at field scales. Here we test three models of varying complexity in their ability to predict both dry beach erosion volumes and dune to a retreat for an East Coast Low storm event that occurred on the Gold Coast, Australia. The process-based model, XBeach, which models the entire profile was able to reproduce both dune toe retreat and dry beach volume, however, was sensitive to calibration parameters. The two parametric models that only modeled erosion above the initial dune toe position were capable of accurately predicting dune toe retreat, however, under-estimated dry beach erosion volumes. With no calibration, the parametric model proposed by Palmsten and Holman (2012) produced the smallest errors of dune toe retreat with mean error in final dune position of 6.6 m, or 18% of the total measured dune retreat. With minimal calibration estimated absolute error in average dune toe retreat was less than 13% of observed retreat for all three models.
    View less >
    Journal Title
    Marine Geology
    Volume
    329-331
    DOI
    https://doi.org/10.1016/j.margeo.2012.09.005
    Subject
    Oceanography not elsewhere classified
    Environmental Impact Assessment
    Earth Sciences
    Publication URI
    http://hdl.handle.net/10072/52105
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander