• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Object Detection via Foreground Contour Feature Selection and Part-based Shape Model

    Author(s)
    Zhang, Huigang
    Wang, Junxiu
    Bai, Xiao
    Zhou, Jun
    Cheng, Jian
    Zhao, Huijie
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    In this paper, we propose a novel approach for object detection via foreground feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly given bounding box on objects. Our approach commences by extracting a set of feature descriptors, and iteratively selects the foreground features using Earth Movers Distances based matching. This leads to a part-based shape model that can be used for object detection. Experimental results show that the proposed method has comparable performance with the state-of-the-art shape-based detection methods but with ...
    View more >
    In this paper, we propose a novel approach for object detection via foreground feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly given bounding box on objects. Our approach commences by extracting a set of feature descriptors, and iteratively selects the foreground features using Earth Movers Distances based matching. This leads to a part-based shape model that can be used for object detection. Experimental results show that the proposed method has comparable performance with the state-of-the-art shape-based detection methods but with less requirements on the data at the training stage.
    View less >
    Conference Title
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012)
    Publisher URI
    http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6460681
    Subject
    Pattern Recognition and Data Mining
    Computer Vision
    Publication URI
    http://hdl.handle.net/10072/52236
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander