A Bag Reconstruction Method for Multiple Instance Classification and Group Record Linkage

View/ Open
Author(s)
Fu, Z
Zhou, J
Peng, F
Christen, P
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
Record linking is the task of detecting records in several databases that refer to the same entity. This task aims at exploring the relationship between entities, which normally lack common identifiers in heterogeneous datasets. When entities contain multiple relational records, linking them across datasets can be more accurate by treating the records as groups, which leads to group linking methods. Even so, individual record links may still be needed for the final group linking step. This problem can be solved by multiple instance learning, in which group links are modelled as bags, and record links are considered as ...
View more >Record linking is the task of detecting records in several databases that refer to the same entity. This task aims at exploring the relationship between entities, which normally lack common identifiers in heterogeneous datasets. When entities contain multiple relational records, linking them across datasets can be more accurate by treating the records as groups, which leads to group linking methods. Even so, individual record links may still be needed for the final group linking step. This problem can be solved by multiple instance learning, in which group links are modelled as bags, and record links are considered as instances. In this paper, we propose a novel method for instance classification and group record linkage via bag reconstruction from instances. The bag reconstruction is based on the modeling of the distribution of negative instances in the training bags via kernel density estimation. We evaluate this approach on both synthetic and real-world data. Our results show that the proposed method can outperform several baseline methods.
View less >
View more >Record linking is the task of detecting records in several databases that refer to the same entity. This task aims at exploring the relationship between entities, which normally lack common identifiers in heterogeneous datasets. When entities contain multiple relational records, linking them across datasets can be more accurate by treating the records as groups, which leads to group linking methods. Even so, individual record links may still be needed for the final group linking step. This problem can be solved by multiple instance learning, in which group links are modelled as bags, and record links are considered as instances. In this paper, we propose a novel method for instance classification and group record linkage via bag reconstruction from instances. The bag reconstruction is based on the modeling of the distribution of negative instances in the training bags via kernel density estimation. We evaluate this approach on both synthetic and real-world data. Our results show that the proposed method can outperform several baseline methods.
View less >
Conference Title
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume
7713 LNAI
Copyright Statement
© 2012 Springer Berlin/Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
Subject
Pattern Recognition and Data Mining