• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Fixed Frame Temporal Pooling

    Thumbnail
    View/Open
    84013_1.pdf (436.7Kb)
    Author(s)
    Thornton, John
    Main, Linda
    Srbic, Andrew
    Griffith University Author(s)
    Thornton, John R.
    Main, Linda M.
    Srbic, Andrew
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Applications of unsupervised learning techniques to action recognition have proved highly competitive in comparison to supervised and hand-crafted approaches, despite not being designed to handle image processing problems. Many of these techniques are either based on biological models of cognition or have responses that correlate to those observed in biological systems. In this study we apply (for the first time) an adaptation of the latest hierarchical temporal memory (HTM) cortical learning algorithms (CLAs) to the problem of action recognition. These HTM algorithms are both unsupervised and represent one of the most ...
    View more >
    Applications of unsupervised learning techniques to action recognition have proved highly competitive in comparison to supervised and hand-crafted approaches, despite not being designed to handle image processing problems. Many of these techniques are either based on biological models of cognition or have responses that correlate to those observed in biological systems. In this study we apply (for the first time) an adaptation of the latest hierarchical temporal memory (HTM) cortical learning algorithms (CLAs) to the problem of action recognition. These HTM algorithms are both unsupervised and represent one of the most complete high-level syntheses available of the current neuroscientific understanding of the functioning of neocortex. Specifically, we extend the latest HTM work on augmented spatial pooling, to produce a fixed frame temporal pooler (FFTP). This pooler is evaluated on the well-known KTH action recognition data set and in comparison with the best performing unsupervised learning algorithm for bag-of-features classification in the area: independent subspace analysis (ISA). Our results show FFTP comes within 2% of ISA's performance and outperforms other comparable techniques on this data set. We take these results to be promising, given the preliminary nature of the research and that the FFTP algorithm is only a partial implementation of the proposed HTM architecture.
    View less >
    Conference Title
    AI 2012: Advances in Artificial Intelligence
    Publisher URI
    https://www.springer.com/gp/book/9783642351006
    DOI
    https://doi.org/10.1007/978-3-642-35101-3_60
    Copyright Statement
    © 2012 Springer Berlin / Heidelberg. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/52270
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander