• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Locality-Regularized Linear Regression for Face Recognition

    Thumbnail
    View/Open
    84076_1.pdf (622.6Kb)
    Author(s)
    Brown, Douglas
    Li, Hanxi
    Gao, Yongsheng
    Griffith University Author(s)
    Brown, Douglas L.
    Gao, Yongsheng
    Li, Hanxi
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Linear Regression Classification (LRC) based face recognition achieves high accuracy while being highly efficient. As with most other linear-subspace-based methods, the faces of a subject are assumed to reside on a linear manifold; however, where occlusion or disturbances are involved, this assumption may be inaccurate. In this paper, a manifold-learning procedure is used to expand on conventional LRC by excluding faces not fitting the original assumption (of linearity), thereby localizing the manifold subspace, increasing the accuracy over conventional LRC and reducing the number of faces for which the regression must be ...
    View more >
    Linear Regression Classification (LRC) based face recognition achieves high accuracy while being highly efficient. As with most other linear-subspace-based methods, the faces of a subject are assumed to reside on a linear manifold; however, where occlusion or disturbances are involved, this assumption may be inaccurate. In this paper, a manifold-learning procedure is used to expand on conventional LRC by excluding faces not fitting the original assumption (of linearity), thereby localizing the manifold subspace, increasing the accuracy over conventional LRC and reducing the number of faces for which the regression must be performed. The algorithm is evaluated using two standard databases and shown to outperform the conventional LRC.
    View less >
    Conference Title
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012)
    Publisher URI
    http://ieeexplore.ieee.org/document/6460448
    Copyright Statement
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Computer vision
    Publication URI
    http://hdl.handle.net/10072/52305
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander