• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Partial Feedback Linearizing Controller Design for a DSTATCOM to Enhance Voltage Stability of Distribution Network with Distributed Generation

    Author(s)
    Mahmud, MMA
    Pota, HR
    Hossain, MJ
    Griffith University Author(s)
    Hossain, Jahangir
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    This paper presents a nonlinear controller design for a DSTATCOM connected to a distribution network with distributed generation (DG) to regulate the line voltage by providing reactive power compensation. The controller is designed based on the partial feedback linearization which transforms the nonlinear system into a reduced order linear system and an autonomous system whose dynamics are known as internal dynamics of the system. This paper also investigates the stability of internal dynamics of a DSTATCOM as it is a basic requirement to design partial feedback linearizing controllers. The performance of the ...
    View more >
    This paper presents a nonlinear controller design for a DSTATCOM connected to a distribution network with distributed generation (DG) to regulate the line voltage by providing reactive power compensation. The controller is designed based on the partial feedback linearization which transforms the nonlinear system into a reduced order linear system and an autonomous system whose dynamics are known as internal dynamics of the system. This paper also investigates the stability of internal dynamics of a DSTATCOM as it is a basic requirement to design partial feedback linearizing controllers. The performance of the proposed controller is evaluated in terms reactive power compensation to enhance the voltage stability of distribution networks with DG.
    View less >
    Conference Title
    2012 IEEE INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON)
    DOI
    https://doi.org/10.1109/PowerCon.2012.6401371
    Subject
    Electrical energy generation (incl. renewables, excl. photovoltaics)
    Publication URI
    http://hdl.handle.net/10072/52331
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander