• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Off-line Restricted-Set Handwritten Word Recognition for Student Identification in a Short Answer Question Automated Assessment System

    Author(s)
    Suwanwiwat, Hemmaphan
    Blumenstein, Michael
    Nguyen, Vu
    Griffith University Author(s)
    Blumenstein, Michael M.
    Suwanwiwat, Hemmaphan
    Nguyen, Vu
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Handwriting recognition is one of the most intensive areas of study in the field of pattern recognition. Many applications are able to benefit from a robust off-line handwriting recognition technique. An automatic off-line assessment system and a writer identification system are two of those applications. Off-line automatic assessment systems can be an aid for teachers in the marking process; they can reduce the time consumed by the human marker. There has only been limited work undertaken in developing off-line automatic assessment systems using handwriting recognition, and none in developing student identification ...
    View more >
    Handwriting recognition is one of the most intensive areas of study in the field of pattern recognition. Many applications are able to benefit from a robust off-line handwriting recognition technique. An automatic off-line assessment system and a writer identification system are two of those applications. Off-line automatic assessment systems can be an aid for teachers in the marking process; they can reduce the time consumed by the human marker. There has only been limited work undertaken in developing off-line automatic assessment systems using handwriting recognition, and none in developing student identification systems, even though such systems would clearly benefit the education sector. In order to develop a complete off-line automatic assessment system, student identification using full student names is proposed in this paper. The Gaussian Grid and Modified Direction Feature Extraction Techniques are investigated in order to develop the proposed system. The recognition rates achieved using both techniques are encouraging (up to 99.08% for the Modified Direction feature extraction technique, and up to 98.28% for the Gaussian Grid feature extraction technique.
    View less >
    Conference Title
    Proceedings of the 2012 12th International Conference on Hybrid Intelligent Systems (HIS)
    Publisher URI
    http://www.mirlabs.net/his12/
    DOI
    https://doi.org/10.1109/HIS.2012.6421328
    Subject
    Image processing
    Publication URI
    http://hdl.handle.net/10072/52361
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander