• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Science to Support Management of Receiving Waters in an Event-Driven Ecosystem: From Land to River to Sea

    Thumbnail
    View/Open
    86930_1.pdf (172.3Kb)
    Author(s)
    Leigh, Catherine
    Burford, Michele A
    Connolly, Rod M
    Olley, Jon M
    Saeck, Emily
    Sheldon, Fran
    Smart, James CR
    Bunn, Stuart E
    Griffith University Author(s)
    Bunn, Stuart E.
    Sheldon, Fran
    Connolly, Rod M.
    Burford, Michele A.
    Olley, Jon M.
    Smart, Jim C.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Managing receiving-water quality, ecosystem health and ecosystem service delivery is challenging in regions where extreme rainfall and runoff events occur episodically, confounding and often intensifying land-degradation impacts. We synthesize the approaches used in river, reservoir and coastal water management in the event-driven subtropics of Australia, and the scientific research underpinning them. Land-use change has placed the receiving waters of Moreton Bay, an internationally-significant coastal wetland, at risk of ecological degradation through increased nutrient and sediment loads. The event-driven climate exacerbates ...
    View more >
    Managing receiving-water quality, ecosystem health and ecosystem service delivery is challenging in regions where extreme rainfall and runoff events occur episodically, confounding and often intensifying land-degradation impacts. We synthesize the approaches used in river, reservoir and coastal water management in the event-driven subtropics of Australia, and the scientific research underpinning them. Land-use change has placed the receiving waters of Moreton Bay, an internationally-significant coastal wetland, at risk of ecological degradation through increased nutrient and sediment loads. The event-driven climate exacerbates this issue, as the waterways and ultimately Moreton Bay receive large inputs of nutrients and sediment during events, well above those received throughout stable climatic periods. Research on the water quality and ecology of the region's rivers and coastal waters has underpinned the development of a world-renowned monitoring program and, in combination with catchment-source tracing methods and modeling, has revealed the key mechanisms and management strategies by which receiving-water quality, ecosystem health and ecosystem services can be maintained and improved. These approaches provide a useful framework for management of water bodies in other regions driven by episodic events, or where novel stressors are involved (e.g., climate change, urbanization), to support sustained ecosystem service delivery and restoration of aquatic ecosystems.
    View less >
    Journal Title
    Water
    Volume
    5
    DOI
    https://doi.org/10.3390/w5020780
    Copyright Statement
    © 2013 by the authors; licensee MDPI, author. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    Subject
    Geomorphology and earth surface processes
    Publication URI
    http://hdl.handle.net/10072/52552
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander