• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A spatial temporal decision framework for adaptation to sea level rise

    Thumbnail
    View/Open
    85419_1.pdf (848.7Kb)
    Author(s)
    Sahin, Oz
    Mohamed, Sherif
    Griffith University Author(s)
    Mohamed, Sherif A.
    Sahin, Oz
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    There is a strong link between decision making and environmental stresses. Two dilemmas confront decision makers: how and when to adapt to sea level rise, due to complexities of environmental systems and the changing nature of the decision making process. This process is inherently complex and often involves many stakeholders with conflicting views. Considering the complexity and dynamic nature of coastal systems, this paper introduces a Spatial Temporal Decision framework to assess coastal vulnerability, and the adaptation alternatives to SLR. The STD is based upon a combination of: System Dynamics modelling; Geographical ...
    View more >
    There is a strong link between decision making and environmental stresses. Two dilemmas confront decision makers: how and when to adapt to sea level rise, due to complexities of environmental systems and the changing nature of the decision making process. This process is inherently complex and often involves many stakeholders with conflicting views. Considering the complexity and dynamic nature of coastal systems, this paper introduces a Spatial Temporal Decision framework to assess coastal vulnerability, and the adaptation alternatives to SLR. The STD is based upon a combination of: System Dynamics modelling; Geographical Information Systems modelling; and multicriteria analyses of stakeholders' views using the Analytical Hierarchy Process. For case study analyses, the City of the Gold Coast located in Southeast Queensland, Australia has been selected. The results of the vulnerability assessment indicate that, at the end of a 100 year simulation period, approximately 6% of the landscape in the study area will be gradually inundated over time, with 0.5 cm rise per year. However, the percentage of the vulnerable area leapt to about 34% for Scenario 2, and 56% for Scenario 3, which represent 1 cm and 1.5 cm rise per year. Using the information obtained from vulnerability assessments, three stakeholder groups (Politicians, Experts and Residents) were consulted to determine the goal, criteria and adaptation alternatives for the multicriteria analyses. Analyses of survey data reveal that across the three stakeholder groups, Effectiveness and Sustainability are the criteria of highest priority.
    View less >
    Journal Title
    Environmental Modelling & Software
    Volume
    46
    DOI
    https://doi.org/10.1016/j.envsoft.2013.03.004
    Copyright Statement
    © 2013 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Environmental management not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/52561
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander