• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Digital Micro Magnetofluidic Platform For Lab-on-a-Chip Applications

    Author(s)
    Koh, Wei Hang
    Lok, Khoi Seng
    Nam-Trung, Nguyen
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    This paper reports the design and investigation of a digital micro magnetofluidic platform for lab-on-a-chip applications. The platform allows a ferrofluid droplet to be driven along a preprogrammed path. The platform consists of a programmable x-y-positioning stage, a permanent magnet and a glass plate coated with a thin layer of Teflon. First, the actuation of a stand-alone water-based ferrofluid droplet was investigated. Circular, rectangular, triangular and number-eight-shape trajectories were tested and analyzed. The speed of the droplet is evaluated from the position data of the black ferrofluid using a customized ...
    View more >
    This paper reports the design and investigation of a digital micro magnetofluidic platform for lab-on-a-chip applications. The platform allows a ferrofluid droplet to be driven along a preprogrammed path. The platform consists of a programmable x-y-positioning stage, a permanent magnet and a glass plate coated with a thin layer of Teflon. First, the actuation of a stand-alone water-based ferrofluid droplet was investigated. Circular, rectangular, triangular and number-eight-shape trajectories were tested and analyzed. The speed of the droplet is evaluated from the position data of the black ferrofluid using a customized MATLAB program. The results show that better positioning accuracy and steady movement can be achieved with smooth trajectories. Next, the ferrofluid droplet as the driving engine for a cargo of other diamagnetic liquid droplets is demonstrated. The characteristics of different cargo volumes are investigated. Due to the liquid/liquid cohesion, a large cargo of five times the volume of a 3-uL ferrofluid droplet can be transported. If the cargo is larger than the driving ferrofluid droplet, the liquid system forms a long trail that faithfully follows the preprogrammed path. Various mixing experiments were carried out. The effectiveness of mixing in this system is demonstrated with a titration test as well as a chemiluminescence assay. The platform shows a robust, simple and flexible concept for implementing a complex analysis protocol with multiple reaction steps.
    View less >
    Journal Title
    Journal of Fluids Engineering
    Volume
    135
    Issue
    2
    DOI
    https://doi.org/10.1115/1.4023443
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
    Subject
    Engineering
    Biomedical instrumentation
    Microelectromechanical systems (MEMS)
    Publication URI
    http://hdl.handle.net/10072/52666
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander