• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bacterial nitrification activity directly associated with isolated benthic marine animals

    Author(s)
    Welsh, DT
    Castadelli, G
    Griffith University Author(s)
    Welsh, David T.
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    Potential nitrification rates (PNR) directly associated with isolated marine macrobenthic invertebrates were measured for a range of benthic epifaunal and infaunal species (bivalves, gastropods, polychaetes and crustaceans) collected from the Sacca di Goro, Po River delta, Italy. In the case of the filter-feeding bivalves, Tapes philippinarum and Mytilus galloprovicialis the PNR associated with the shell surfaces and dissected animal tissues (gills, siphons and residual tissue) were determined separately, in order to assess the distribution of the nitrifier populations. Significant PNR was found associated with all the tested ...
    View more >
    Potential nitrification rates (PNR) directly associated with isolated marine macrobenthic invertebrates were measured for a range of benthic epifaunal and infaunal species (bivalves, gastropods, polychaetes and crustaceans) collected from the Sacca di Goro, Po River delta, Italy. In the case of the filter-feeding bivalves, Tapes philippinarum and Mytilus galloprovicialis the PNR associated with the shell surfaces and dissected animal tissues (gills, siphons and residual tissue) were determined separately, in order to assess the distribution of the nitrifier populations. Significant PNR was found associated with all the tested macrofaunal species with activities ranging between 12 and 2,250 nmol ind.-1 day-1 and specific activities between 150 and 18,400 nmol g-1 dry weight day-1. However, no simple relationships were observed between PNR and the animalsrsquo taxonomic or functional group, or with animal comportment (infaunal or epifaunal) or size class, indicating that more complex interactions may regulate the degree of colonisation of the animals by nitrifier populations. Incubations of shells alone and dissected tissues of the bivalves T. philippinarum and M. galloprovicialis demonstrated that approximately 50% of the total PNR activity was associated with the shell surfaces and 50% with the internal animal tissues, with the highest specific activities of 950 and 1,970 nmol g-1 dry weight day-1 determined for the gills of T. philippinarum and M. galloprovicialis, respectively. Thus, specific relationships may exist between the nitrifiers and their animal hosts. Overall, our data indicate that the macrofaunal stimulation of nitrification and/or coupled nitrification-denitrification observed in previous studies may not be solely due to the animalsrsquo burrow walls serving as sites for nitrification, but also to the fact that the internal and external surfaces of the animals themselves are also colonised by nitrifying bacteria. Tentative calculations based on reported animal densities in the Sacca di Goro and the determined PNRs indicate that animal-associated nitrifier populations could contribute significantly to overall nitrification rates in situ, although further experiments are required to determine to what extent the potential rates measured in this study are realised under in situ conditions.
    View less >
    Journal Title
    Marine Biology
    Volume
    144
    DOI
    https://doi.org/10.1007/s00227-003-1252-z
    Subject
    Environmental sciences
    Biological sciences
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/5274
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander