• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ethanol Blocks the Reversal of Prolonged Dopamine Inhibition of Dopaminergic Neurons of the Ventral Tegmental Area

    Author(s)
    Nimitvilai, Sudarat
    Arora, Devinder S
    McElvain, Maureen A
    Brodie, Mark S
    Griffith University Author(s)
    Arora, Devinder S.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Background Dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are important for the rewarding and reinforcing properties of alcohol and other drugs of abuse. Regulation of the firing of DAergic VTA neurons is controlled by a number of factors, including autoregulation of firing by D2 dopamine (DA) receptors. The inhibitory effects of DA on these neurons exhibit concentration- and time-dependent desensitization, which we have termed dopamine inhibition reversal (DIR), as it requires concurrent stimulation of D1/D5 and D2 receptors. Methods Extracellular recording of DAergic VTA neurons in brain slices was used ...
    View more >
    Background Dopaminergic (DAergic) neurons of the ventral tegmental area (VTA) are important for the rewarding and reinforcing properties of alcohol and other drugs of abuse. Regulation of the firing of DAergic VTA neurons is controlled by a number of factors, including autoregulation of firing by D2 dopamine (DA) receptors. The inhibitory effects of DA on these neurons exhibit concentration- and time-dependent desensitization, which we have termed dopamine inhibition reversal (DIR), as it requires concurrent stimulation of D1/D5 and D2 receptors. Methods Extracellular recording of DAergic VTA neurons in brain slices was used to test the effects of ethanol (EtOH) (10 to 80 mM) on DIR. Results DIR was reduced by concentrations of EtOH as low as 10 mM and was blocked by higher EtOH concentrations. In addition, as we have shown that reversal of inhibition by the selective D2 agonist quinpirole can be observed in the presence of an activator of protein kinase C (PKC), we tested whether EtOH could antagonize the reversal of quinpirole inhibition in the presence of phorbol 12-myristate 13-acetate (PMA). EtOH (80 mM) blocked the reversal of quinpirole seen in the presence of PMA, suggesting that the antagonism of DIR by EtOH is owing to an action at a stage in the mechanism at or distal to PKC. Once achieved, DIR is not antagonized by EtOH. Conclusions The blockade by relatively low concentrations of EtOH of DIR may play an important role in the spectrum of action of EtOH on DAergic neurons of the VTA and may be important in the acute and chronic actions of EtOH on the excitability of these brain reward/reinforcement neurons.
    View less >
    Journal Title
    Alcoholism: Clinical and Experimental Research
    Volume
    36
    Issue
    11
    DOI
    https://doi.org/10.1111/j.1530-0277.2012.01814.x
    Subject
    Clinical sciences
    Neurosciences
    Central nervous system
    Publication URI
    http://hdl.handle.net/10072/52855
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander