• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Crater formation in soils by raindrop impact

    Thumbnail
    View/Open
    25889_1.pdf (2.922Mb)
    Author(s)
    Ghadiri, H
    Griffith University Author(s)
    Ghadiri, Hossein
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    The process of crater formation by the impact of water drops on soil, sand and various other target material was studied. Craters of various shapes and sizes were observed on different target materials or conditions, ranging from circumferential depression to completely hemispherical shape. Crater shape was dependent upon target material, its flow stress or shear strength and the presence and thickness of water on the surface. Between 5 and 22 per cent of impact energy was spent on cratering, but the relationship between crater volume and kinetic energy of a raindrop was curvilinear, indicating a lower efficiency of impact ...
    View more >
    The process of crater formation by the impact of water drops on soil, sand and various other target material was studied. Craters of various shapes and sizes were observed on different target materials or conditions, ranging from circumferential depression to completely hemispherical shape. Crater shape was dependent upon target material, its flow stress or shear strength and the presence and thickness of water on the surface. Between 5 and 22 per cent of impact energy was spent on cratering, but the relationship between crater volume and kinetic energy of a raindrop was curvilinear, indicating a lower efficiency of impact energy in removing target material as the energy increases. Impact impulse, on the other hand, showed a more linear relationship with crater volume, and the ratio of impulse over crater volume (I/V) remained constant for the entire range of drop sizes, impact velocities, and surface conditions used in this study. Surface shear strength, represented by the penetration depth of fall-cone penetrometer, appeared to be a key factor involved in this process. An equation was developed which related crater volume to cone penetration depth and impact impulse. Crater volume, which appeared to be a better indicator of the total amount of material dislodged by a raindrop than splash amount, can thus be predicted using this equation.
    View less >
    Journal Title
    Earth Surface Processes and Landforms
    Volume
    29
    Issue
    1
    DOI
    https://doi.org/10.1002/esp.1014
    Copyright Statement
    © 2004 John Wiley & Sons, Ltd.. This is the pre-peer reviewed version of the following article: Earth Surface Processes and Landforms [29(1):77-89], which has been published in final form at http://dx.doi.org/10.1002/esp.1014
    Subject
    History and Archaeology
    Geology
    Physical Geography and Environmental Geoscience
    Publication URI
    http://hdl.handle.net/10072/5291
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander