• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical modeling of tunable optofluidics lens based on combined effect of hydrodynamics and electroosmosis

    Thumbnail
    View/Open
    85203_1.pdf (1.221Mb)
    Author(s)
    Li, Haiwang
    Wong, Teck Neng
    Nam-Trung, Nguyen
    Chai, John C
    Griffith University Author(s)
    Nguyen, Nam-Trung
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    A numerical model of liquid-core liquid-cladding optofluidics lens under the combined effect of hydrodynamics and electroosmosis are presented in this paper. In the numerical simulation, a combined formulation using only one set of conservation equations to treat both fluids are employed. The coupled electric potential equation and Navier-Stokes equation are solved using the finite volume method. The level-set method is used to capture the interface between the fluids. To overcome a weakness in the level-set method, the localized mass correction scheme is applied to ensure mass conservation. The validity of the numerical ...
    View more >
    A numerical model of liquid-core liquid-cladding optofluidics lens under the combined effect of hydrodynamics and electroosmosis are presented in this paper. In the numerical simulation, a combined formulation using only one set of conservation equations to treat both fluids are employed. The coupled electric potential equation and Navier-Stokes equation are solved using the finite volume method. The level-set method is used to capture the interface between the fluids. To overcome a weakness in the level-set method, the localized mass correction scheme is applied to ensure mass conservation. The validity of the numerical scheme is evaluated by comparing with the experimental results; numerical results highlight the electroosmotic effect; the combined effect of pressure driven and electroosmosis can form optically smooth interfaces with arc-shape between the cladding fluids and the core fluid. Under fixed cladding flow rates, the same electric field forms symmetric biconvex lens only. Different electric fields can form biconvex lens, plane-convex lens, and meniscus lens. The results also present the velocity profiles and flow fields of micro lens. There is a good agreement between numerical and experimental results.
    View less >
    Journal Title
    International journal of heat and mass transfer
    Volume
    55
    Issue
    9-10
    DOI
    https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.028
    Copyright Statement
    © 2012 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Physical sciences
    Engineering
    Microelectromechanical systems (MEMS)
    Publication URI
    http://hdl.handle.net/10072/53119
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander