• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Targeted enrichment strategies for next-generation plant biology

    Author(s)
    Cronn, R
    Knaus, BJ
    Liston, A
    Maughan, PJ
    Parks, M
    Syring, JV
    Udall, J
    Griffith University Author(s)
    Parks, Matthew
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    堐remise of the study: The dramatic advances offered by modern DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome size, extensive variation in the proportion of organellar DNA in total DNA, polyploidy, and gene number/redundancy contribute to these challenges, and they demand flexible targeted enrichment strategies to achieve the desired goals. ...
    View more >
    堐remise of the study: The dramatic advances offered by modern DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome size, extensive variation in the proportion of organellar DNA in total DNA, polyploidy, and gene number/redundancy contribute to these challenges, and they demand flexible targeted enrichment strategies to achieve the desired goals. 堍ethods: In this article, we summarize the many available targeted enrichment strategies that can be used to target partial-to-complete organellar genomes, as well as known and anonymous nuclear targets. These methods fall under four categories: PCR-based enrichment, hybridization-based enrichment, restriction enzyme-based enrichment, and enrichment of expressed gene sequences. 堋ey results: Examples of plant-specific applications exist for nearly all methods described. While some methods are well established (e.g., transcriptome sequencing), other promising methods are in their infancy (hybridization enrichment). A direct comparison of methods shows that PCR-based enrichment may be a reasonable strategy for accessing small genomic targets (e.g., =50 kbp), but that hybridization and transcriptome sequencing scale more efficiently if larger targets are desired. 堃onclusions: While the benefits of targeted sequencing are greatest in plants with large genomes, nearly all comparative projects can benefit from the improved throughput offered by targeted multiplex DNA sequencing, particularly as the amount of data produced from a single instrument approaches a trillion bases per run.
    View less >
    Journal Title
    American Journal of Botany
    Volume
    99
    Issue
    2
    DOI
    https://doi.org/10.3732/ajb.1100356
    Subject
    Ecology
    Evolutionary biology
    Evolutionary biology not elsewhere classified
    Plant biology
    Publication URI
    http://hdl.handle.net/10072/53151
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander