• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Single-atom absorption imaging

    Author(s)
    Streed, EW
    Jechow, A
    Norton, BG
    Kielpinski, D
    Griffith University Author(s)
    Streed, Erik
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Absorption of light is a fundamental process in imaging. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the quantum limits of absorption imaging. Here we report the first absorption imaging of a single isolated atom, the smallest and simplest system reported to date. Contrasts of up to 3.1(3)% were observed in images of a laser cooled 174Yb+ ion confined in vacuum by a radio-frequency Paul trap. This work establishes a new sensitivity bound for absorption imaging with a 7800x improvement over the contrast previously observed in imaging a single molecule.Absorption of light is a fundamental process in imaging. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the quantum limits of absorption imaging. Here we report the first absorption imaging of a single isolated atom, the smallest and simplest system reported to date. Contrasts of up to 3.1(3)% were observed in images of a laser cooled 174Yb+ ion confined in vacuum by a radio-frequency Paul trap. This work establishes a new sensitivity bound for absorption imaging with a 7800x improvement over the contrast previously observed in imaging a single molecule.
    View less >
    Conference Title
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION V
    Volume
    8272
    DOI
    https://doi.org/10.1117/12.926837
    Subject
    Quantum optics and quantum optomechanics
    Publication URI
    http://hdl.handle.net/10072/53417
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander