• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An intelligent pattern recognition model to automate the categorisation of residential water end-use events

    Thumbnail
    View/Open
    88396_1.pdf (886.7Kb)
    Author(s)
    Nguyen, KA
    Stewart, RA
    Zhang, H
    Griffith University Author(s)
    Stewart, Rodney A.
    Zhang, Hong
    Nguyen, Khoi A.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    The rapid dissemination of residential water end-use (e.g. shower, clothes washer, etc.) consumption data to the customer via a web-enabled portal interface is becoming feasible through the advent of high resolution smart metering technologies. However, in order to achieve this paradigm shift in residential customer water use feedback, an automated approach for disaggregating complex water flow trace signatures into a registry of end-use event categories needs to be developed. This outcome is achieved by applying a hybrid combination of gradient vector filtering, Hidden Markov Model (HMM) and Dynamic Time Warping Algorithm ...
    View more >
    The rapid dissemination of residential water end-use (e.g. shower, clothes washer, etc.) consumption data to the customer via a web-enabled portal interface is becoming feasible through the advent of high resolution smart metering technologies. However, in order to achieve this paradigm shift in residential customer water use feedback, an automated approach for disaggregating complex water flow trace signatures into a registry of end-use event categories needs to be developed. This outcome is achieved by applying a hybrid combination of gradient vector filtering, Hidden Markov Model (HMM) and Dynamic Time Warping Algorithm (DTW) techniques on an existing residential water end-use database of 252 households located in South-east Queensland, Australia having high resolution water meters (0.0139 L/pulse), remote data transfer loggers (5 s logging) and completed household water appliance audits. The approach enables both single independent events (e.g. shower event) and combined events (i.e. several overlapping single events) to be disaggregated from flow data into a comprehensive end-use event registry. Complex blind source separation of concurrently occurring water end use events (e.g. shower and toilet flush occurring in same time period) is the primary focus of this present study. Validation of the developed model is achieved through an examination of 50 independent combined events.
    View less >
    Journal Title
    Environmental Modelling & Software
    Volume
    47
    DOI
    https://doi.org/10.1016/j.envsoft.2013.05.002
    Copyright Statement
    © 2013 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Water resources engineering
    Publication URI
    http://hdl.handle.net/10072/53484
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander