Novel autoregressive basis structure model for short-term forecasting of customer electricity demand

View/ Open
Author(s)
Bennett, Christopher
Stewart, Rodney
Lu, Junwei
Year published
2013
Metadata
Show full item recordAbstract
This paper describes the method of a prototype forecast component of the energy resource management control algorithm for STATCOMs with battery energy storage. It is desired to be computationally efficient and of minimal complexity due to the desired purposes of forecasting each load in a LV network. The forecast model is comprised of a basis structure selected from observed electricity demand data and an electricity demand difference forecasting component estimated by the autoregressive method. The produced forecasting model had a R2 of 0.65 and a standard error of 368.55 W. During validation of the model, discrepancies ...
View more >This paper describes the method of a prototype forecast component of the energy resource management control algorithm for STATCOMs with battery energy storage. It is desired to be computationally efficient and of minimal complexity due to the desired purposes of forecasting each load in a LV network. The forecast model is comprised of a basis structure selected from observed electricity demand data and an electricity demand difference forecasting component estimated by the autoregressive method. The produced forecasting model had a R2 of 0.65 and a standard error of 368.55 W. During validation of the model, discrepancies between the forecasted and observed electricity demand profiles were observed. To overcome forecast model limitations, future work will involve more precise clustering of demand profiles according to additional temporal and environmental variables. This is to enable forecasts under a more diverse range of electricity demand profiles. The final developed forecasting model will be a core component of the firmware controlling STATCOMS with energy storage systems.
View less >
View more >This paper describes the method of a prototype forecast component of the energy resource management control algorithm for STATCOMs with battery energy storage. It is desired to be computationally efficient and of minimal complexity due to the desired purposes of forecasting each load in a LV network. The forecast model is comprised of a basis structure selected from observed electricity demand data and an electricity demand difference forecasting component estimated by the autoregressive method. The produced forecasting model had a R2 of 0.65 and a standard error of 368.55 W. During validation of the model, discrepancies between the forecasted and observed electricity demand profiles were observed. To overcome forecast model limitations, future work will involve more precise clustering of demand profiles according to additional temporal and environmental variables. This is to enable forecasts under a more diverse range of electricity demand profiles. The final developed forecasting model will be a core component of the firmware controlling STATCOMS with energy storage systems.
View less >
Conference Title
2013 IEEE TENCON SPRING CONFERENCE
Copyright Statement
© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Numerical analysis
Electrical energy generation (incl. renewables, excl. photovoltaics)
Engineering design