• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Reliability of a high accuracy image-based system for 3D modelling of the medial longitudinal arch during gait

    Author(s)
    Alshadli, D
    Chong, AK
    McDougall, K
    Al-Baghdadi, J
    Milburn, P
    Newsham-West, R
    Griffith University Author(s)
    Milburn, Peter D.
    Newsham-West, Richard J.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    he Medial Longitudinal Arch (MLA) is the largest arch of the foot and is regarded as the most important foot arch in clinical foot assessments due to its influence on lower limb function, foot stability and foot pain. Each foot is classified as either high arched, low arched or normally arched depending on the structure of the MLA. There are currently a number of techniques that are used to classify the foot in a static state based on measurements of the MLA. These static measurements are then used to predict the behaviour of the foot arch in a dynamic state. However, it is easy to identify limitations with these techniques ...
    View more >
    he Medial Longitudinal Arch (MLA) is the largest arch of the foot and is regarded as the most important foot arch in clinical foot assessments due to its influence on lower limb function, foot stability and foot pain. Each foot is classified as either high arched, low arched or normally arched depending on the structure of the MLA. There are currently a number of techniques that are used to classify the foot in a static state based on measurements of the MLA. These static measurements are then used to predict the behaviour of the foot arch in a dynamic state. However, it is easy to identify limitations with these techniques as the shape of the MLA in a static state cannot predict the behaviour of the MLA during dynamic activities. Therefore, the aim of this chapter is to introduce a high accuracy 3D modelling system that has been developed to map the shape of the MLA during gait using high definition video camcorders. The objectives of the study were hence: (1) to determine whether changes can be detected along the MLA for different weight bearings during gait, (2) to test the accuracy and reliability of the developed imaging system for creating dynamic 3D models of the foot arch and (3) to determine the quality and suitability of the 3D model. The results of the study show that changes can be detected along the MLA during gait with a level of accuracy of less than 0.4 mm when a 3D model of the foot is generated in PhotoModeler Scanner.
    View less >
    Book Title
    Developments in Multidimensional Spatial Data Models
    DOI
    https://doi.org/10.1007/978-3-642-36379-5_6
    Subject
    Biomechanics
    Publication URI
    http://hdl.handle.net/10072/53689
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander