Numerical study of thermocoalescence of microdroplets in a microfluidic chamber

View/ Open
Author(s)
Ho, Peng Ching
Nam-Trung, Nguyen
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
The present paper reports the numerical investigation of thermocoalescence of droplets in amicrochannel network consisting of a droplet formation section connecting to a temperature-induced merging chamber. The numerical model is formulated as an incompressible immiscible two-phase flow problem with oil and water as the continuous and dispersed phase, respectively. The governing equations are solved using finite volume method on a staggered mesh. The interface is captured by a narrow-band particle level-set method. The paper examines the droplet formation process and droplet size at 4 different ratios of oil and water flow ...
View more >The present paper reports the numerical investigation of thermocoalescence of droplets in amicrochannel network consisting of a droplet formation section connecting to a temperature-induced merging chamber. The numerical model is formulated as an incompressible immiscible two-phase flow problem with oil and water as the continuous and dispersed phase, respectively. The governing equations are solved using finite volume method on a staggered mesh. The interface is captured by a narrow-band particle level-set method. The paper examines the droplet formation process and droplet size at 4 different ratios of oil and water flow rate. The motion of the droplets from the formation section into and through the heat-induced merging chamber is analyzed. The numerical method is able to provide a visual presentation of the droplet movement in a heated environment under the influence of thermocapillarity. The relationship between the critical merging temperature and the fluid flow rate is also analyzed and discussed.
View less >
View more >The present paper reports the numerical investigation of thermocoalescence of droplets in amicrochannel network consisting of a droplet formation section connecting to a temperature-induced merging chamber. The numerical model is formulated as an incompressible immiscible two-phase flow problem with oil and water as the continuous and dispersed phase, respectively. The governing equations are solved using finite volume method on a staggered mesh. The interface is captured by a narrow-band particle level-set method. The paper examines the droplet formation process and droplet size at 4 different ratios of oil and water flow rate. The motion of the droplets from the formation section into and through the heat-induced merging chamber is analyzed. The numerical method is able to provide a visual presentation of the droplet movement in a heated environment under the influence of thermocapillarity. The relationship between the critical merging temperature and the fluid flow rate is also analyzed and discussed.
View less >
Journal Title
Physics of Fluids
Volume
25
Issue
9
Copyright Statement
© 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Phys. Fluids 25, 082006, 2013 and may be found at http://dx.doi.org/10.1063/1.4819134.
Subject
Mathematical sciences
Physical sciences
Engineering