• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Capacitance and Temperature Effects of the SiC- and Si-Based MEMS Pressure Sensor

    Author(s)
    Marsi, N.
    Majlis, B.
    Mohd-Yasin, Faisal
    Hamzah, A.
    Griffith University Author(s)
    Mohd-Yasin, Faisal
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    This project designs the pressure sensor for monitoring the extreme conditions inside the gas turbine engine. The capacitive-based instead of piezoresistive-based pressure sensor is employed to avoid temperature drift. The deflecting (top) plate and the fixed (bottom) plate generate the capacitance, which is proportional to the applied input pressure and temperature. Two thin film materials of four different sizes are employed for the top plate, namely cubic silicon carbide (3C-SiC) and silicon (Si). Their performances in term of the sensitivity and linearity of the capacitance vs pressure are simulated at the temperature ...
    View more >
    This project designs the pressure sensor for monitoring the extreme conditions inside the gas turbine engine. The capacitive-based instead of piezoresistive-based pressure sensor is employed to avoid temperature drift. The deflecting (top) plate and the fixed (bottom) plate generate the capacitance, which is proportional to the applied input pressure and temperature. Two thin film materials of four different sizes are employed for the top plate, namely cubic silicon carbide (3C-SiC) and silicon (Si). Their performances in term of the sensitivity and linearity of the capacitance vs pressure are simulated at the temperature of 27 ì 500ì 700àand 1000î The results show that both materials display linear characteristics for temperature up to 500ì although SiC-based sensor shows higher sensitivity. However, when the temperatures are increased to 700àand 1000ì the Si-based pressure sensor starts to malfunction at 50 MPa. However, the SiC-based pressure sensor continues to demonstrate high sensitivity and linearity at such high temperature and pressure. This paper validates the need of employing silicon carbide instead of silicon for sensing of extreme environments.
    View less >
    Conference Title
    3rd ISESCO International Workshop and Conference on Nanotechnology (IWCN 2012)
    Publisher URI
    http://www.ukm.my/iwcn2012/
    Subject
    Microelectromechanical Systems (MEMS)
    Microelectronics and Integrated Circuits
    Publication URI
    http://hdl.handle.net/10072/54227
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander