A new method for the numerical evaluation of nearly singular integrals on triangular elements in the 3D boundary element method

View/ Open
Author(s)
Johnston, Barbara M
Johnston, Peter R
Elliott, David
Year published
2013
Metadata
Show full item recordAbstract
A new method (the sinh-sigmoidal method) is proposed for the numerical evaluation of both nearly weakly and nearly strongly singular integrals on triangular boundary elements. These integrals arise in the 3D boundary element method when the source point is very close to the element of integration. The new polar coordinate-based method introduces a sinh transformation in the radial direction and a sigmoidal transformation in the angular direction, before the application of Gaussian quadrature. It also uses approximately twice as many quadrature points in the angular direction as in the radial direction, in response to a finding ...
View more >A new method (the sinh-sigmoidal method) is proposed for the numerical evaluation of both nearly weakly and nearly strongly singular integrals on triangular boundary elements. These integrals arise in the 3D boundary element method when the source point is very close to the element of integration. The new polar coordinate-based method introduces a sinh transformation in the radial direction and a sigmoidal transformation in the angular direction, before the application of Gaussian quadrature. It also uses approximately twice as many quadrature points in the angular direction as in the radial direction, in response to a finding that the evaluation of these types of integrals is particularly sensitive to the placement of the quadrature points in the angular direction. Comparisons with various other methods demonstrate its accuracy and competitiveness. A major advantage of the new method is its ease of implementation and applicability to a wide class of integrals.
View less >
View more >A new method (the sinh-sigmoidal method) is proposed for the numerical evaluation of both nearly weakly and nearly strongly singular integrals on triangular boundary elements. These integrals arise in the 3D boundary element method when the source point is very close to the element of integration. The new polar coordinate-based method introduces a sinh transformation in the radial direction and a sigmoidal transformation in the angular direction, before the application of Gaussian quadrature. It also uses approximately twice as many quadrature points in the angular direction as in the radial direction, in response to a finding that the evaluation of these types of integrals is particularly sensitive to the placement of the quadrature points in the angular direction. Comparisons with various other methods demonstrate its accuracy and competitiveness. A major advantage of the new method is its ease of implementation and applicability to a wide class of integrals.
View less >
Journal Title
Journal of Computational and Applied Mathematics
Volume
245
Copyright Statement
© 2013 Elsevier B.V. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Applied mathematics
Approximation theory and asymptotic methods
Numerical and computational mathematics