Design Optimization of MEMS based LLC Tunable Resonant Converter for Power Supplies on Chip

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Khan, F
Zhu, Y
Lu, JW
Dao, D
Year published
2013
Metadata
Show full item recordAbstract
In this paper, a novel MEMS based LLC converter is proposed for on chip power supplies. The design is optimized based on commercially available Metal MUMPs process for fabrication. The resonant frequency is optimized at 20MHz and MEMS based variable capacitor is fabricated on the chip to tune the peak resonance frequency of circuit which varies due to the load variations. The Design is simulated in FEM based numerical software COMSOL and Intellisuite. According to analysis the magnetizing inductance of 42nH and leakage inductance of 40nH has been achieved from 16 mm2 rectangular coil transformer. The total capacitance of ...
View more >In this paper, a novel MEMS based LLC converter is proposed for on chip power supplies. The design is optimized based on commercially available Metal MUMPs process for fabrication. The resonant frequency is optimized at 20MHz and MEMS based variable capacitor is fabricated on the chip to tune the peak resonance frequency of circuit which varies due to the load variations. The Design is simulated in FEM based numerical software COMSOL and Intellisuite. According to analysis the magnetizing inductance of 42nH and leakage inductance of 40nH has been achieved from 16 mm2 rectangular coil transformer. The total capacitance of 1500pF has been achieved from parallel plate capacitors and variation of 3pF has been achieved from variable capacitor.
View less >
View more >In this paper, a novel MEMS based LLC converter is proposed for on chip power supplies. The design is optimized based on commercially available Metal MUMPs process for fabrication. The resonant frequency is optimized at 20MHz and MEMS based variable capacitor is fabricated on the chip to tune the peak resonance frequency of circuit which varies due to the load variations. The Design is simulated in FEM based numerical software COMSOL and Intellisuite. According to analysis the magnetizing inductance of 42nH and leakage inductance of 40nH has been achieved from 16 mm2 rectangular coil transformer. The total capacitance of 1500pF has been achieved from parallel plate capacitors and variation of 3pF has been achieved from variable capacitor.
View less >
Journal Title
Advanced Materials Research
Volume
705
Copyright Statement
© 2013 Trans Tech Publications. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Engineering
Microelectromechanical systems (MEMS)