• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Controllable Optical Phase Shift Over One Radian from a Single Isolated Atom

    Thumbnail
    View/Open
    87602_1.pdf (565.5Kb)
    Author(s)
    Jechow, A
    Norton, BG
    Haendel, S
    Blums, V
    Streed, EW
    Kielpinski, D
    Griffith University Author(s)
    Streed, Erik
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Fundamental optics such as lenses and prisms work by applying phase shifts of several radians to incoming light, and rapid control of such phase shifts is crucial to telecommunications. However, large, controllable optical phase shifts have remained elusive for isolated quantum systems. We have used a single trapped atomic ion to induce and measure a large optical phase shift of 1:3 0:1 radians in light scattered by the atom. Spatial interferometry between the scattered light and unscattered illumination light enables us to isolate the phase shift in the scattered component. The phase shift achieves the maximum value ...
    View more >
    Fundamental optics such as lenses and prisms work by applying phase shifts of several radians to incoming light, and rapid control of such phase shifts is crucial to telecommunications. However, large, controllable optical phase shifts have remained elusive for isolated quantum systems. We have used a single trapped atomic ion to induce and measure a large optical phase shift of 1:3 0:1 radians in light scattered by the atom. Spatial interferometry between the scattered light and unscattered illumination light enables us to isolate the phase shift in the scattered component. The phase shift achieves the maximum value allowed by atomic theory over the accessible range of laser frequencies, pointing out new opportunities in microscopy and nanophotonics. Single-atom phase shifts of this magnitude open up new quantum information protocols, in particular long-range quantum phase-shift-keying cryptography.
    View less >
    Journal Title
    Physical Review Letters
    Volume
    110
    Issue
    11
    DOI
    https://doi.org/10.1103/PhysRevLett.110.113605
    Copyright Statement
    © 2013 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Physical sciences
    Quantum optics and quantum optomechanics
    Engineering
    Publication URI
    http://hdl.handle.net/10072/54802
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander