• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • pH Dictates the Release of Hydrophobic Drug Cocktail from Mesoporous Nanoarchitecture

    Thumbnail
    View/Open
    89771_1.pdf (1.333Mb)
    Author(s)
    Muhammad, F
    Wang, A
    Guo, M
    Zhao, J
    Qi, W
    Yingjie, G
    Gu, J
    Zhu, G
    Griffith University Author(s)
    Zhu, Guangshan
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Combination therapy has been a norm in clinical practice to effectively treat cancer. Besides polytherapy, nowadays, smart and nanobased drug carriers are extensively being explored to deliver drugs according to pathophysiological environment of diseases. In this regard, herein we designed really intelligent mesoporous architecture, incorporating both combinational therapy with smart nanotechnology, to simultaneously deliver two highly hydrophobic chemotherapeutic drugs in response to extracellular and/or intracellular acidic environ of tumor. Novelty of the system lies in the employment of acid responsive ZnO QDs to clog ...
    View more >
    Combination therapy has been a norm in clinical practice to effectively treat cancer. Besides polytherapy, nowadays, smart and nanobased drug carriers are extensively being explored to deliver drugs according to pathophysiological environment of diseases. In this regard, herein we designed really intelligent mesoporous architecture, incorporating both combinational therapy with smart nanotechnology, to simultaneously deliver two highly hydrophobic chemotherapeutic drugs in response to extracellular and/or intracellular acidic environ of tumor. Novelty of the system lies in the employment of acid responsive ZnO QDs to clog not only the nanochannels of mesoporous silica, encapsulating one hydrophobic drug, but also exploitation of chelate forming propensity of another hydrophobic drug (curcumin) to load a significant quantity onto the surface of ZnO nanolids. Cell viability results revealed an extraordinarily high cytotoxic efficiency of that lethal drug cocktail even at a concentration as low as 3 姯mL nanocarrier. We envision that this sophisticated nanocarrier, which utilizes both interior pore and exterior surface of nanolids for loading different hydrophobic guest molecules and their subsequent acid responsive release, will undoubtedly, illustrates its remarkable potential in targeted chemotherapy.
    View less >
    Journal Title
    ACS Applied Materials and Interfaces
    DOI
    https://doi.org/10.1021/am4035027
    Copyright Statement
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright 2013 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see Http://dx.doi.org/10.1021/am4035027.
    Subject
    Chemical sciences
    Bioinorganic chemistry
    Engineering
    Publication URI
    http://hdl.handle.net/10072/54832
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander