Rates of evolution in ancient DNA from Adelie penguins
Author(s)
Lambert, DM
Ritchie, PA
Millar, CD
Holland, B
Drummond, AJ
Baroni, C
Griffith University Author(s)
Year published
2002
Metadata
Show full item recordAbstract
Well-preserved subfossil bones of Adelie penguins, Pygoscelis adeliae, underlie existing and abandoned nesting colonies in Antarctica. These bones, dating back to more than 7000 years before the present, harbor some of the best-preserved ancient DNA yet discovered. From 96 radiocarbon-aged bones, we report large numbers of mitochondrial haplotypes, some of which appear to be extinct, given the 380 living birds sampled. We demonstrate DNA sequence evolution through time and estimate the rate of evolution of the hypervariable region I using a Markov chain Monte Carlo integration and a least-squares regression analysis. our ...
View more >Well-preserved subfossil bones of Adelie penguins, Pygoscelis adeliae, underlie existing and abandoned nesting colonies in Antarctica. These bones, dating back to more than 7000 years before the present, harbor some of the best-preserved ancient DNA yet discovered. From 96 radiocarbon-aged bones, we report large numbers of mitochondrial haplotypes, some of which appear to be extinct, given the 380 living birds sampled. We demonstrate DNA sequence evolution through time and estimate the rate of evolution of the hypervariable region I using a Markov chain Monte Carlo integration and a least-squares regression analysis. our calculated rates of evolution are approximately two to seven times higher than previous indirect phylogenetic estimates.
View less >
View more >Well-preserved subfossil bones of Adelie penguins, Pygoscelis adeliae, underlie existing and abandoned nesting colonies in Antarctica. These bones, dating back to more than 7000 years before the present, harbor some of the best-preserved ancient DNA yet discovered. From 96 radiocarbon-aged bones, we report large numbers of mitochondrial haplotypes, some of which appear to be extinct, given the 380 living birds sampled. We demonstrate DNA sequence evolution through time and estimate the rate of evolution of the hypervariable region I using a Markov chain Monte Carlo integration and a least-squares regression analysis. our calculated rates of evolution are approximately two to seven times higher than previous indirect phylogenetic estimates.
View less >
Journal Title
Science
Volume
295
Copyright Statement
Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
Subject
Molecular Evolution