• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Manganite−Water Interface

    Author(s)
    Xia, Shuwei
    Pan, Gang
    Cai, Zheng-Li
    Wang, Yun
    Reimers, Jeffrey R
    Griffith University Author(s)
    Wang, Yun
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    The properties of bulk manganite, its freshly cleaved (010) surface, and this surface exposed to water monolayers at both low and high coverage and to liquid water at 300 K, are examined using density-functional theory (DFT) by the PW91 density functional as well as using the new PM6 semiempirical electronic-structure method. The bonds between the (010) layers are calculated to be very weak, of average energy -2.7 kcal mol-1, explaining the ease at which manganite surfaces cleave. Upon cleavage, a surface reconstruction is predicted that produces ferroelectrically ordered surface layers, and the surface manganese atoms are ...
    View more >
    The properties of bulk manganite, its freshly cleaved (010) surface, and this surface exposed to water monolayers at both low and high coverage and to liquid water at 300 K, are examined using density-functional theory (DFT) by the PW91 density functional as well as using the new PM6 semiempirical electronic-structure method. The bonds between the (010) layers are calculated to be very weak, of average energy -2.7 kcal mol-1, explaining the ease at which manganite surfaces cleave. Upon cleavage, a surface reconstruction is predicted that produces ferroelectrically ordered surface layers, and the surface manganese atoms are predicted to display different chemical properties depending on the nature of the oxygen atom to which they bind in the subsurface layer. Water is predicted to be only physisorbed to the surface, with this process acting to lift the surface reconstruction. At high water coverage, the differences between the two types of surface manganese atoms are also lost. Simulations at 300 K indicate that less than half of the surface manganese atoms coordinate to the fluid at 300 K while only two-thirds of the manganite oxygen atoms on the outside of the surface coordinate. No dominate liquid structure is found, suggesting that dielectric continuum models may be useful in understanding surface chemistry, but it is clear that water-water rather than water-surface interactions dominate the nature of the interface.
    View less >
    Journal Title
    Journal of Physical Chemistry C
    Volume
    111
    Issue
    28
    DOI
    https://doi.org/10.1021/jp068842t
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the author[s] for more information.
    Subject
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/54921
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander