• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A virally encoded chaperone specialised for folding of the major capsid protein of African swine fever virus

    Author(s)
    Cobbold, C
    Windsor, M
    Wileman, T
    Griffith University Author(s)
    Cobbold, Christian J.
    Year published
    2001
    Metadata
    Show full item record
    Abstract
    It is generally believed that cellular chaperones facilitate the folding of virus capsid proteins, or that capsid proteins fold spontaneously. Here we show that p73, the major capsid protein of African swine fever virus (ASFV) failed to fold and aggregated when expressed alone in cells. This demonstrated that cellular chaperones were unable to aid the folding of p73 and suggested that ASFV may encode a chaperone. An 80-kDa protein encoded by ASFV, termed the capsid-associated protein (CAP) 80, bound to the newly synthesized capsid protein in infected cells. The 80-kDa protein was released following conformational maturation ...
    View more >
    It is generally believed that cellular chaperones facilitate the folding of virus capsid proteins, or that capsid proteins fold spontaneously. Here we show that p73, the major capsid protein of African swine fever virus (ASFV) failed to fold and aggregated when expressed alone in cells. This demonstrated that cellular chaperones were unable to aid the folding of p73 and suggested that ASFV may encode a chaperone. An 80-kDa protein encoded by ASFV, termed the capsid-associated protein (CAP) 80, bound to the newly synthesized capsid protein in infected cells. The 80-kDa protein was released following conformational maturation of p73 and dissociated before capsid assembly. Coexpression of the 80-kDa protein with p73 prevented aggregation and allowed the capsid protein to fold with kinetics identical to those seen in infected cells. CAP80 is, therefore, a virally encoded chaperone that facilitates capsid protein folding by masking domains exposed by the newly synthesized capsid protein, which are susceptible to aggregation, but cannot be accommodated by host chaperones. It is likely that these domains are ultimately buried when newly synthesized capsid proteins are added to the growing capsid shell.
    View less >
    Journal Title
    Journal of Virology
    Volume
    75
    DOI
    https://doi.org/10.1128/JVI.75.16.7221-7229.2001
    Subject
    Biological Sciences
    Agricultural and Veterinary Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/54943
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander