• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Monitoring Salivary Melatonin Concentrations in Children With Sleep Disorders Using Liquid Chromatography–Tandem Mass Spectrometry

    Author(s)
    Khan, Sohil A
    George, Rani
    Charles, Bruce G
    Taylor, Paul J
    Heussler, Helen S
    Cooper, David M
    McGuire, Treasure M
    Pache, David
    Norris, Ross LG
    Griffith University Author(s)
    Khan, Sohil A.
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    BACKGROUND: Melatonin is synthesized in the pineal gland and is an important circadian phase marker, especially in the determination of sleep patterns. Both temporary and permanent abnormal sleep patterns occur in children; therefore, it is desirable to have methods for monitoring melatonin in biological fluids in the diagnosis and treatment of such disorders. OBJECTIVE: The objective of the study is to develop a liquid chromatography-tandem mass spectrometry method for the determination of melatonin in saliva and to apply it to monitoring salivary concentrations in children with sleep disorders. METHODS: A deuterated ...
    View more >
    BACKGROUND: Melatonin is synthesized in the pineal gland and is an important circadian phase marker, especially in the determination of sleep patterns. Both temporary and permanent abnormal sleep patterns occur in children; therefore, it is desirable to have methods for monitoring melatonin in biological fluids in the diagnosis and treatment of such disorders. OBJECTIVE: The objective of the study is to develop a liquid chromatography-tandem mass spectrometry method for the determination of melatonin in saliva and to apply it to monitoring salivary concentrations in children with sleep disorders. METHODS: A deuterated internal standard (d7-melatonin) was added to a diluted saliva sample (20 µL) in an autosampler vial insert, and 50 µL were injected. Plasticware was strictly avoided, and all glassware was scrupulously cleaned and then baked at 120°C for at least 48 hours to obtain satisfactory performance. Reverse-phase chromatography was performed on a C8 column using a linear gradient elution profile comprising mobile phases A (0.1% aqueous formic acid) and B (15% methanol in acetonitrile containing 0.1% formic acid), pumped at a total flow rate of 0.8 mL/min. The run time was 8 minutes. After atmospheric pressure chemical ionization, mass spectrometric detection was in positive ion mode. Mass detection was by selected reaction monitoring mode with the following mass transitions used for quantification: melatonin, m/z 233.0 → 173.8 and d7-melatonin, m/z 240.0 → 178.3. RESULTS: Linearity (r > 0.999) was established from 3.9 to 1000 pg/mL. Imprecision (coefficient of variation percent) was less than 11%, and accuracy was 100-105% (7.0-900 pg/mL). The method was selective, and the mean (range) ratio of the slopes of calibrations in water to those in daytime saliva samples collected from 10 healthy adult subjects was 0.989 (0.982-0.997), indicating negligible matrix effects. The application of the assay was demonstrated in healthy adults and in children being clinically investigated for sleep disturbances. CONCLUSIONS: A validated liquid chromatography-tandem mass spectrometry method suitable for monitoring salivary melatonin in children with circadian rhythm sleep disorders is reported. The method also has potential application to pediatric population pharmacokinetic studies using sparse sampling of saliva as the biological sample matrix.
    View less >
    Journal Title
    Therapeutic Drug Monitoring
    Volume
    35
    Issue
    3
    DOI
    https://doi.org/10.1097/FTD.0b013e3182885cb2
    Subject
    Analytical chemistry
    Pharmacology and pharmaceutical sciences
    Publication URI
    http://hdl.handle.net/10072/55346
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander