• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Late Quaternary changes in flow-regime on the Gwydir distributive fluvial system, southeastern Australia

    Author(s)
    Pietsch, Timothy J
    Nanson, Gerald C
    Olley, Jon M
    Griffith University Author(s)
    Olley, Jon M.
    Pietsch, Tim
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Ages for large palaeochannels of the Gwydir distributive fluvial system (DFS) in northern New South Wales, Australia have been determined using single grain optically stimulated luminescence. Two palaeochannel systems have been found to dominate; the here named Coocalla (43-34 ka) and Kamilaroi (19-16 ka) which have inferred palaeodischarges 25-100 times the bankfull discharges of nearby channels of the contemporary Gwydir system, which appears to have been established during the Mid-Holocene. This scale differential is very much larger than that reported for other catchments in southeastern Australia, and reflects both a ...
    View more >
    Ages for large palaeochannels of the Gwydir distributive fluvial system (DFS) in northern New South Wales, Australia have been determined using single grain optically stimulated luminescence. Two palaeochannel systems have been found to dominate; the here named Coocalla (43-34 ka) and Kamilaroi (19-16 ka) which have inferred palaeodischarges 25-100 times the bankfull discharges of nearby channels of the contemporary Gwydir system, which appears to have been established during the Mid-Holocene. This scale differential is very much larger than that reported for other catchments in southeastern Australia, and reflects both a decline in catchment runoff through the Last Glacial cycle and the adoption of a distributary pattern sometime after 16 ka. Actual decline in catchment runoff, determined by comparing estimated palaeodischarge with contemporary flows upstream of the DFS where flow is confined to a single channel, indicate contemporary discharge to be 0.1 times and 0.25 times that of the Coocalla and Kamilaroi, respectively. The chronology presented here shows periods of increased discharge in the Gwydir to be more or less coincident with those observed elsewhere in the Murray Darling Basin. Although no evidence of a 'Gum Creek' fluvial phase (from 35 to 25 ka) was found, the Coocalla and Kamilaroi palaeochannel systems broadly conform in age to 'Kerarbury' and 'Yanco' fluvial phases on the Murrumbidgee and Murray systems. This synchronicity with more southern catchments supports the hypothesis that La Nina - like conditions were semi-permanent for much of the Last Glacial cycle with moisture derived largely from the western Pacific Ocean.
    View less >
    Journal Title
    Quaternary Science Reviews
    Volume
    69
    DOI
    https://doi.org/10.1016/j.quascirev.2013.03.002
    Subject
    Earth sciences
    History, heritage and archaeology
    Publication URI
    http://hdl.handle.net/10072/55525
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander