• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Automated eye tracking system calibration using artificial neural networks

    Author(s)
    Coughlin, MJ
    Cutmore, TRH
    Hine, TJ
    Griffith University Author(s)
    Cutmore, Timothy
    Coughlin, Michael
    Hine, Trevor J.
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    The electro-oculogram (EOG) continues to be widely used to record eye movements especially in clinical settings. However, an efficient and accurate means of converting these recordings into eye position is lacking. An artificial neural network (ANN) that maps two-dimensional (2D) eye movement recordings into 2D eye positions can enhance the utility of such recordings. Multi-layer perceptrons (MLPs) with non-linear activation functions and trained with back propagation proved to be capable of calibrating simulated EOG data to a mean accuracy of 0.33஠Linear perceptrons (LPs) were only nearly half as accurate. For five subjects, ...
    View more >
    The electro-oculogram (EOG) continues to be widely used to record eye movements especially in clinical settings. However, an efficient and accurate means of converting these recordings into eye position is lacking. An artificial neural network (ANN) that maps two-dimensional (2D) eye movement recordings into 2D eye positions can enhance the utility of such recordings. Multi-layer perceptrons (MLPs) with non-linear activation functions and trained with back propagation proved to be capable of calibrating simulated EOG data to a mean accuracy of 0.33஠Linear perceptrons (LPs) were only nearly half as accurate. For five subjects, the mean accuracy provided by the MLPs was 1.09࠯f visual angle (੠for EOG data, and 0.98ࠦor an infrared eye tracker. MLPs enabled calibration of 2D saccadic EOG to an accuracy not significantly different from that obtained with the infrared tracker. Using initial weights trained on another person reduced MLP training time, reaching convergence in as little as 20 iterations.
    View less >
    Journal Title
    Computer Methods and Programs in Biomedicine
    Volume
    76
    DOI
    https://doi.org/10.1016/j.cmpb.2004.06.001
    Subject
    Biomedical engineering
    Publication URI
    http://hdl.handle.net/10072/5562
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander