• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Nonlinear Controller Design for Single-Phase Grid-Connected Photovoltaic Systems Using Partial Feedback Linearization

    Author(s)
    Mahmud, MA
    Pota, HR
    Hossain, MJ
    Griffith University Author(s)
    Hossain, Jahangir
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    This paper deals with the design of a nonlinear controller for single-phase grid-connected photovoltaic (PV) systems to maintain the current injected into the grid in phase with grid voltage and to regulate the DC link voltage for achieving maximum power point tracking (MPPT). The controller is designed based on the partial feedback linearization which transforms the nonlinear system into a reduced order linear system and an autonomous system whose dynamics are known as internal dynamics of the system. This paper also deals with the stability of internal dynamics of PV systems which is a basic requirement to design ...
    View more >
    This paper deals with the design of a nonlinear controller for single-phase grid-connected photovoltaic (PV) systems to maintain the current injected into the grid in phase with grid voltage and to regulate the DC link voltage for achieving maximum power point tracking (MPPT). The controller is designed based on the partial feedback linearization which transforms the nonlinear system into a reduced order linear system and an autonomous system whose dynamics are known as internal dynamics of the system. This paper also deals with the stability of internal dynamics of PV systems which is a basic requirement to design partial feedback linearizing controller. The performance of the proposed controller is evaluated in terms of delivering maximum power and synchronization of grid current with voltage under changes in atmospheric conditions.
    View less >
    Conference Title
    2012 2ND AUSTRALIAN CONTROL CONFERENCE (AUCC)
    Publisher URI
    http://ieeexplore.ieee.org/document/6613167
    Subject
    Photonic and electro-optical devices, sensors and systems (excl. communications)
    Publication URI
    http://hdl.handle.net/10072/55621
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander