• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Quantifying processes of pedogenesis using optically stimulated luminescence

    Author(s)
    Stockmann, U.
    Minasny, B.
    Pietsch, Tim
    Mcbratney, A.
    Griffith University Author(s)
    Pietsch, Tim
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    New analytical techniques have opened up the possibility of addressing rates of soil processes quantitatively. Here, we present the results of an investigation into the use of single-grain optically stimulated luminescence (OSL) dating to derive rates of soil mixing in the top 50 cm of soil profiles from two toposequences situated in the Werrikimbe National Park in Australia. Of 500 single grains analysed from each sampled depth increment, less than 25% provided a finite age, with the rest of the grains either non-responsive or dose-saturated. This proportion of finite-age grains tended to decrease with soil depth. Median ...
    View more >
    New analytical techniques have opened up the possibility of addressing rates of soil processes quantitatively. Here, we present the results of an investigation into the use of single-grain optically stimulated luminescence (OSL) dating to derive rates of soil mixing in the top 50 cm of soil profiles from two toposequences situated in the Werrikimbe National Park in Australia. Of 500 single grains analysed from each sampled depth increment, less than 25% provided a finite age, with the rest of the grains either non-responsive or dose-saturated. This proportion of finite-age grains tended to decrease with soil depth. Median ages of quartz grains increased down the soil profile, with topsoil ages of up to 500 years and subsoil ages of up to 5000 years. Few 'younger' grains were found deeper in the profile and few 'older' grains near the soil surface. These trends suggest that pedoturbation is resulting in vertical transport of grains through the profile, but that there is a distribution of transport distances, with a poor probability of large transport distances from surface to subsoil or vice versa compared with a more frequent movement of grains to and from the surface in the uppermost 10-35 cm. The calculation of a single age for each soil horizon was unachievable as each horizon contained a heterogeneous mixture of grains with varying histories of transport to and from the soil surface. Soil mixing was confirmed along both toposequences studied. However, the occurrence of minor mixing rates did not lead to a homogenization of the topsoil and adjacent horizons. We postulated that mixing velocities were mostly related to flora at our study site. Vertical soil mixing rates of 0.5 and 0.2 mm year-1 were calculated from the distribution of finite single-grain ages.
    View less >
    Journal Title
    European Journal of Soil Science
    Volume
    64
    DOI
    https://doi.org/10.1111/ejss.12012
    Subject
    Surface Processes
    Soil Sciences
    Plant Biology
    Crop and Pasture Production
    Publication URI
    http://hdl.handle.net/10072/55657
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander