Dynamic characteristics of traffic flow with consideration of pedestrians’ road-crossing behavior

View/ Open
Author(s)
Jin, Sheng
Qu, Xiaobo
Xu, Cheng
Wang, Dian-Hai
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
Pedestrians' road-crossing behavior can often interrupt traffic flow and cause vehicle queueing. In this paper, we propose some moving rules for modeling the interaction of vehicles and pedestrians. The modified visual angle car-following model is presented for the movement of vehicles with consideration of the lateral effect of waiting pedestrians. The pedestrians' behavior is summarized as consisting of three steps: pedestrian arrival, gap acceptance, and pedestrian crossing. Some characteristic parameters of pedestrians are introduced to characterize pedestrians' behavior. Simulation results show that the interaction of ...
View more >Pedestrians' road-crossing behavior can often interrupt traffic flow and cause vehicle queueing. In this paper, we propose some moving rules for modeling the interaction of vehicles and pedestrians. The modified visual angle car-following model is presented for the movement of vehicles with consideration of the lateral effect of waiting pedestrians. The pedestrians' behavior is summarized as consisting of three steps: pedestrian arrival, gap acceptance, and pedestrian crossing. Some characteristic parameters of pedestrians are introduced to characterize pedestrians' behavior. Simulation results show that the interaction of vehicles and pedestrians lowers the traffic capacity and increases delays to both vehicles and pedestrians.
View less >
View more >Pedestrians' road-crossing behavior can often interrupt traffic flow and cause vehicle queueing. In this paper, we propose some moving rules for modeling the interaction of vehicles and pedestrians. The modified visual angle car-following model is presented for the movement of vehicles with consideration of the lateral effect of waiting pedestrians. The pedestrians' behavior is summarized as consisting of three steps: pedestrian arrival, gap acceptance, and pedestrian crossing. Some characteristic parameters of pedestrians are introduced to characterize pedestrians' behavior. Simulation results show that the interaction of vehicles and pedestrians lowers the traffic capacity and increases delays to both vehicles and pedestrians.
View less >
Journal Title
Physica A: Statistical Mechanics and its Applications
Volume
392
Copyright Statement
© 2013 Elsevier Inc. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Applied mathematics
Mathematical physics
Quantum physics
Transport engineering