A Novel Bidirectional Z-Shaped Thermally Actuated RF MEMS Switch for Multiple-Beam Antenna Array

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Pal, J
Zhu, Y
Lu, JW
Dao, DV
Year published
2013
Metadata
Show full item recordAbstract
In this paper RF MEMS switchis designed for dielectric-embedded electronically switched multiple-beam (DE-ESMB) antenna array. To achieve small stiffness without buckling, a novel bidirectional Z-shaped thermal actuator is used instead of V-shaped thermal actuator, which can generate large displacement and high contact force at low actuation voltage. With the actuation current from-0.6 A to 0.6 A, the electrothermal actuator can achieve a bidirectional motion in a dynamic range of-10.08 μm to 10.17 μm.RF performances are improved by suspending the structure 25 μm from the substrate using MetalMumps process. An ON state ...
View more >In this paper RF MEMS switchis designed for dielectric-embedded electronically switched multiple-beam (DE-ESMB) antenna array. To achieve small stiffness without buckling, a novel bidirectional Z-shaped thermal actuator is used instead of V-shaped thermal actuator, which can generate large displacement and high contact force at low actuation voltage. With the actuation current from-0.6 A to 0.6 A, the electrothermal actuator can achieve a bidirectional motion in a dynamic range of-10.08 μm to 10.17 μm.RF performances are improved by suspending the structure 25 μm from the substrate using MetalMumps process. An ON state insertion loss of-0.14 dB at 10 GHz and an OFF state isolation of-67 dB at 10 GHz are achieved on low resistivity silicon substrate.
View less >
View more >In this paper RF MEMS switchis designed for dielectric-embedded electronically switched multiple-beam (DE-ESMB) antenna array. To achieve small stiffness without buckling, a novel bidirectional Z-shaped thermal actuator is used instead of V-shaped thermal actuator, which can generate large displacement and high contact force at low actuation voltage. With the actuation current from-0.6 A to 0.6 A, the electrothermal actuator can achieve a bidirectional motion in a dynamic range of-10.08 μm to 10.17 μm.RF performances are improved by suspending the structure 25 μm from the substrate using MetalMumps process. An ON state insertion loss of-0.14 dB at 10 GHz and an OFF state isolation of-67 dB at 10 GHz are achieved on low resistivity silicon substrate.
View less >
Journal Title
Advanced Materials Research
Volume
705
Copyright Statement
© 2013 Trans Tech Publications. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Engineering
Microelectromechanical systems (MEMS)