• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Finding the minimum number of elements with sum above a threshold

    Author(s)
    Jiang, Yan
    Pang, Chaoyi
    Zhang, Hao Lan
    Wang, Junhu
    Li, Tongliang
    Zhang, Qing
    He, Jing
    Griffith University Author(s)
    Wang, John
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    Motivated by the wavelet compression techniques and their applications, we consider the following problem: Given an unsorted array of numerical values and a threshold, what is the minimum number of elements chosen from the array, such that the sum of these elements is not less than the threshold value. In this article, we first provide two linear time algorithms for the problem. We then demonstrate the efficacy of these algorithms through experiments. Lastly, as an application of this research, we indicate that the construction of wavelet synopses on a prescribed error bound (in L2 metric) can be solved in linear time.Motivated by the wavelet compression techniques and their applications, we consider the following problem: Given an unsorted array of numerical values and a threshold, what is the minimum number of elements chosen from the array, such that the sum of these elements is not less than the threshold value. In this article, we first provide two linear time algorithms for the problem. We then demonstrate the efficacy of these algorithms through experiments. Lastly, as an application of this research, we indicate that the construction of wavelet synopses on a prescribed error bound (in L2 metric) can be solved in linear time.
    View less >
    Journal Title
    Information Sciences
    Volume
    238
    DOI
    https://doi.org/10.1016/j.ins.2013.02.035
    Subject
    Mathematical sciences
    Information and computing sciences
    Database systems
    Engineering
    Publication URI
    http://hdl.handle.net/10072/55708
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander