• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An autonomous and intelligent expert system for residential water end-use classification

    Thumbnail
    View/Open
    88519_1.pdf (1.672Mb)
    Author(s)
    Khoi, Anh Nguyen
    Stewart, Rodney A
    Zhang, Hong
    Griffith University Author(s)
    Stewart, Rodney A.
    Zhang, Hong
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Intelligent metering technology combined with advanced numerical techniques enable a paradigm shift in the current level of water consumption information provision that is available to the customer and the water business. The aim of this study was to develop an autonomous and intelligent system for residential water end-use classification that could interface with customers and water business managers via a user-friendly web-based application. Water flow data collected directly from smart water meters includes both single (e.g., a shower event occurring alone) and combined (i.e., an event that comprises several overlapping ...
    View more >
    Intelligent metering technology combined with advanced numerical techniques enable a paradigm shift in the current level of water consumption information provision that is available to the customer and the water business. The aim of this study was to develop an autonomous and intelligent system for residential water end-use classification that could interface with customers and water business managers via a user-friendly web-based application. Water flow data collected directly from smart water meters includes both single (e.g., a shower event occurring alone) and combined (i.e., an event that comprises several overlapping single events) water end use events. The authors recently developed intelligent algorithms to solve the complex problem of autonomously categorising residential water consumption data into a registry of single and combined events using a hybrid combination of techniques including Hidden Markov Model (HMM), Dynamic Time Warping (DTW) algorithm, time-of-day probability functions, threshold values and various physical features. However, the issue still remained, which is the focus of this current paper, on how to integrate self-learning functionality into the visioned expert system, in order that it can learn from newly collected datasets from different cities, regions and countries, to that collected for the training data. Such versatility and adaptive capacity is essential to make the expert system widely applicable. Through applying alternate forms of HMM and DTW in association with a frequency analysis technique, a suitable self-learning methodology was formulated and tested on three independent households located in Melbourne, Australia with a prediction accuracy of between 80-90% for the major end-use categories. The three principle flow data processing modules (i.e. single and combined event recognition and self-learning function) were integrated into a prototype software application for performing autonomous water end-use analysis and its functionality is presented in the latter sections of this paper. The developed expert system has profound implications for government, water businesses and consumers, seeking to better manage precious urban water resources.
    View less >
    Journal Title
    Expert Systems With Applications
    Volume
    41
    Issue
    2
    DOI
    https://doi.org/10.1016/j.eswa.2013.07.049
    Copyright Statement
    © 2013 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Mathematical sciences
    Information and computing sciences
    Engineering
    Water resources engineering
    Publication URI
    http://hdl.handle.net/10072/55807
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander