• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Wave-induced multi-layered seabed response around a buried pipeline

    Author(s)
    Zhou, Xiang-Lian
    Jeng, Dong-Sheng
    Yan, Yu-Guang
    Wang, Jian-Hua
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2013
    Metadata
    Show full item record
    Abstract
    The subject of the wave-seabed-structure interaction is important for geotechnical and coastal engineering regarding stability analysis of foundations for offshore structures. Most previous theoretical investigations available concerned only with such a pipeline in a uniform single layer seabed. In this paper, a wave-seabed-pipeline system is modeled using finite elements. The seabed is treated as porous medium and characterized by Biot's dynamic equations. To explore the mechanism of the seabed instability, the two possible formulations: partly dynamic (u-p model) and fully dynamic (u-w model) for the wave-induced seabed ...
    View more >
    The subject of the wave-seabed-structure interaction is important for geotechnical and coastal engineering regarding stability analysis of foundations for offshore structures. Most previous theoretical investigations available concerned only with such a pipeline in a uniform single layer seabed. In this paper, a wave-seabed-pipeline system is modeled using finite elements. The seabed is treated as porous medium and characterized by Biot's dynamic equations. To explore the mechanism of the seabed instability, the two possible formulations: partly dynamic (u-p model) and fully dynamic (u-w model) for the wave-induced seabed response are considered. Verification of the proposed model is performed against the previous analytical result and experimental data. Based on the numerical results, the effects of wave and seabed characteristics, such as water depth, permeability, shear modulus, degree of saturation, and pipeline buried depth, on the wave-induced excess pore pressure and vertical effective stress will be examined. Finally, a parametric study will be conducted to examine the effects of wave and soil characteristics on the liquefaction potential. It is worth noting that soil permeability has a very significant influence on the pore pressure generation and liquefaction.
    View less >
    Journal Title
    Ocean Engineering
    Volume
    72
    DOI
    https://doi.org/10.1016/j.oceaneng.2013.06.031
    Subject
    Civil Geotechnical Engineering
    Oceanography
    Civil Engineering
    Maritime Engineering
    Publication URI
    http://hdl.handle.net/10072/55858
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander