• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical modeling of response of a saturated porous seabed around an offshore pipeline considering non-linear wave and current interaction

    Author(s)
    Wen, F
    Jeng, D-S
    Wang, JH
    Zhou, XL
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The evaluation of pore pressure in the vicinity of an offshore buried pipeline is particularly important for pipeline engineers involved in the design of pipeline protection. Unlike previous investigations limited to linear wave loading, the seabed response around a buried pipeline due to combined non-linear wave and current loadings is investigated in this study. Based on third-order approximation for the wave-current interactions, a parametric study has been carried out to examine the influences of wave non-linearity and current on the pore pressure firstly. Numerical results demonstrate the significant effects of current ...
    View more >
    The evaluation of pore pressure in the vicinity of an offshore buried pipeline is particularly important for pipeline engineers involved in the design of pipeline protection. Unlike previous investigations limited to linear wave loading, the seabed response around a buried pipeline due to combined non-linear wave and current loadings is investigated in this study. Based on third-order approximation for the wave-current interactions, a parametric study has been carried out to examine the influences of wave non-linearity and current on the pore pressure firstly. Numerical results demonstrate the significant effects of current in case of larger water depth, smaller period wave and fine sand. Then, the configuration and filled materials for a trench layer that normally is used for the protection of a buried pipeline are studied. The numerical results clearly show that an appropriate trench layer can reduce the risk of liquefaction around a pipeline.
    View less >
    Journal Title
    Applied Ocean Research
    Volume
    35
    DOI
    https://doi.org/10.1016/j.apor.2011.12.005
    Subject
    Civil Geotechnical Engineering
    Oceanography
    Civil Engineering
    Resources Engineering and Extractive Metallurgy
    Publication URI
    http://hdl.handle.net/10072/56003
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander