Show simple item record

dc.contributor.authorKeogh, J.en_US
dc.contributor.authorMorrison, Stevenen_US
dc.contributor.authorBarrett, Roden_US
dc.contributor.editorR F Schmidt, V J Wilsonen_US
dc.date.accessioned2017-05-03T13:05:24Z
dc.date.available2017-05-03T13:05:24Z
dc.date.issued2004en_US
dc.date.modified2010-08-06T07:21:39Z
dc.identifier.issn00144819en_US
dc.identifier.doi10.1007/s00221-004-1968-0en_AU
dc.identifier.urihttp://hdl.handle.net/10072/5632
dc.description.abstractPhysiological tremor in the upper limb of eight adults was examined during the performance of a unilateral pointing task under conditions where the visual feedback, limb used and target size were altered. All subjects were required to aim a hand-held laser pointer at a circular target 5.5 m away with the goal of keeping the laser emission within the centre of the target. Visual feedback was defined as either normal vision (NV) of their limb tremor, where the laser was switched off, or augmented vision (AV) where the laser was switched on. Postural tremor from the segments of the upper limb, forearm muscle EMG activity, and target accuracy measures were recorded and analysed in the time and frequency domains. Accuracy-tremor relations were assessed using cross correlation and linear regression. Results revealed a high degree of similarity in the general pattern of the tremor output seen for each limb segment across conditions with only scalar (amplitude) changes being seen as a function of the different constraints imposed. For any single condition the tremor amplitude increased from proximal to distal segments. The frequency profile for the tremor in any segment displayed two prominent frequency peaks (at 2-4 Hz and 8-12 Hz). A third, higher frequency peak (18-22 Hz) was observed in the index fingers only. Across all conditions significant coupling relations were observed only between the hand-finger and forearm-upper arm segment pairs. Altering the visual feedback was shown to have the greatest effect on limb tremor with increased tremor and EMG activity and decreased coupling being seen under AV conditions. In trying to reduce tremor output when the augmented feedback was provided novice subjects instead increased muscle activity which resulted in increased tremor. Overall these results indicate that the physiological tremor output observed in neurologically normal subjects is not simply the product of intrinsic oscillations but is influenced by the nature of the task being performed.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_AU
dc.languageEnglishen_US
dc.language.isoen_AU
dc.publisherSpringer-Verlagen_US
dc.publisher.placeGermanyen_US
dc.relation.ispartofpagefrom467en_US
dc.relation.ispartofpageto477en_US
dc.relation.ispartofjournalExperimental Brain Researchen_US
dc.relation.ispartofvolume159en_US
dc.subject.fieldofresearchcode321403en_US
dc.titleAugmented visual feedback increases finger tremor during postural pointingen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.date.issued2004
gro.hasfulltextNo Full Text


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record