An optimised product-unit neural network with a novel PSO–BP hybrid training algorithm: Applications to load–deformation analysis of axially loaded piles
Author(s)
Ismail, A
Jeng, D-S
Zhang, LL
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
In general, neural network training is a nonlinear multivariate optimisation problem. Unlike previous studies, in the present study, particle swarm optimisation (PSO) and back-propagation (BP) algorithms were coupled to develop a robust hybrid training algorithm with both local and global search capabilities. To demonstrate the capacity of the proposed model, we applied the model to the predictions of the load-deformation behaviour of axially loaded piles. This is a soil-structure interaction problem, involving a complex mechanism of load transfer from the pile to the supporting geologic medium. A database of full scale pile ...
View more >In general, neural network training is a nonlinear multivariate optimisation problem. Unlike previous studies, in the present study, particle swarm optimisation (PSO) and back-propagation (BP) algorithms were coupled to develop a robust hybrid training algorithm with both local and global search capabilities. To demonstrate the capacity of the proposed model, we applied the model to the predictions of the load-deformation behaviour of axially loaded piles. This is a soil-structure interaction problem, involving a complex mechanism of load transfer from the pile to the supporting geologic medium. A database of full scale pile loading tests is used to train and validate the product-unit network. The results show that the proposed hybrid learning algorithm simulates the load-deformation curve of axially loaded piles more accurately than other BP, PSO, and existing PSO-BP hybrid methods. The network developed using the proposed algorithm also turns out to be more accurate than hyperbolic and t-z models.
View less >
View more >In general, neural network training is a nonlinear multivariate optimisation problem. Unlike previous studies, in the present study, particle swarm optimisation (PSO) and back-propagation (BP) algorithms were coupled to develop a robust hybrid training algorithm with both local and global search capabilities. To demonstrate the capacity of the proposed model, we applied the model to the predictions of the load-deformation behaviour of axially loaded piles. This is a soil-structure interaction problem, involving a complex mechanism of load transfer from the pile to the supporting geologic medium. A database of full scale pile loading tests is used to train and validate the product-unit network. The results show that the proposed hybrid learning algorithm simulates the load-deformation curve of axially loaded piles more accurately than other BP, PSO, and existing PSO-BP hybrid methods. The network developed using the proposed algorithm also turns out to be more accurate than hyperbolic and t-z models.
View less >
Journal Title
Engineering Applications of Artificial Intelligence
Volume
26
Issue
10
Subject
Civil Geotechnical Engineering
Information and Computing Sciences
Engineering