Surface hydrogen bonding can enhance photocatalytic H2 evolution efficiency
Author(s)
Wang, Xue Lu
Fang, Wen Qi
Wang, Hai Feng
Zhang, Haimin
Zhao, Huijun
Yao, Yefeng
Yang, Hua Gui
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
Hydrogen bonding (H-bond) interactions have been regarded as a topic of vital scientific research in areas ranging from inorganic to biological chemistry. However, the application and elucidation of surface H-bond functionalized photocatalysts and the alteration of the character of the photocatalyst itself have not been paid sufficient attention. Here we show the high efficiency of visible-light-driven photocatalytic H2 production, achieved by using a surface H-bonding network decorated g-C3N4 photocatalyst. The hydrated g-C3N4 was designed and synthesized by a facile surface treatment in a slightly alkaline environment. ...
View more >Hydrogen bonding (H-bond) interactions have been regarded as a topic of vital scientific research in areas ranging from inorganic to biological chemistry. However, the application and elucidation of surface H-bond functionalized photocatalysts and the alteration of the character of the photocatalyst itself have not been paid sufficient attention. Here we show the high efficiency of visible-light-driven photocatalytic H2 production, achieved by using a surface H-bonding network decorated g-C3N4 photocatalyst. The hydrated g-C3N4 was designed and synthesized by a facile surface treatment in a slightly alkaline environment. According to NMR and theoretical modeling, the H-bonding bridge can effectively shorten the distance between water molecules and g-C3N4, provide multiple channels for the transition between protons and the excited electrons on g-C3N4, stabilize the anionic intermediate and transition states, and restrain charge recombination. The present result opens new opportunities towards a potential approach to designing a new generation of photocatalyst systems
View less >
View more >Hydrogen bonding (H-bond) interactions have been regarded as a topic of vital scientific research in areas ranging from inorganic to biological chemistry. However, the application and elucidation of surface H-bond functionalized photocatalysts and the alteration of the character of the photocatalyst itself have not been paid sufficient attention. Here we show the high efficiency of visible-light-driven photocatalytic H2 production, achieved by using a surface H-bonding network decorated g-C3N4 photocatalyst. The hydrated g-C3N4 was designed and synthesized by a facile surface treatment in a slightly alkaline environment. According to NMR and theoretical modeling, the H-bonding bridge can effectively shorten the distance between water molecules and g-C3N4, provide multiple channels for the transition between protons and the excited electrons on g-C3N4, stabilize the anionic intermediate and transition states, and restrain charge recombination. The present result opens new opportunities towards a potential approach to designing a new generation of photocatalyst systems
View less >
Journal Title
Journal of Materials Chemistry A: materials for energy and sustainability
Volume
1
Issue
45
Subject
Inorganic green chemistry
Macromolecular and materials chemistry
Electrochemistry
Materials engineering