Warming Rather Than Increased Precipitation Increases Soil Recalcitrant Organic Carbon in a Semiarid Grassland after 6 Years of Treatments

View/ Open
Author(s)
Zhou, Xiaoqi
Chen, Chengrong
Wang, Yanfen
Smaill, Simeon
Clinton, Peter
Griffith University Author(s)
Year published
2013
Metadata
Show full item recordAbstract
Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0-10 and 10-20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable ...
View more >Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0-10 and 10-20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0-10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10-20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0-10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10-20 cm depth may increase with increasing temperature in this semiarid grassland.
View less >
View more >Improved understanding of changes in soil recalcitrant organic carbon (C) in response to global warming is critical for predicting changes in soil organic C (SOC) storage. Here, we took advantage of a long-term field experiment with increased temperature and precipitation to investigate the effects of warming, increased precipitation and their interactions on SOC fraction in a semiarid Inner Mongolian grassland of northern China since April 2005. We quantified labile SOC, recalcitrant SOC and stable SOC at 0-10 and 10-20 cm depths. Results showed that neither warming nor increased precipitation affected total SOC and stable SOC at either depth. Increased precipitation significantly increased labile SOC at the 0-10 cm depth. Warming decreased labile SOC (P = 0.038) and marginally but significantly increased recalcitrant SOC at the 10-20 cm depth (P = 0.082). In addition, there were significant interactive effects of warming and increased precipitation on labile SOC and recalcitrant SOC at the 0-10 cm depth (both P<0.05), indicating that that results from single factor experiments should be treated with caution because of multi-factor interactions. Given that the absolute increase of SOC in the recalcitrant SOC pool was much greater than the decrease in labile SOC, and that the mean residence time of recalcitrant SOC is much greater, our results suggest that soil C storage at 10-20 cm depth may increase with increasing temperature in this semiarid grassland.
View less >
Journal Title
PloS One
Volume
8
Issue
1
Copyright Statement
© 2013 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Subject
Soil biology