• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Surface Impedance Mapping Using Sferics

    Author(s)
    Mogensen, Gavin T
    Espinosa, Hugo G
    Thiel, David V
    Griffith University Author(s)
    Thiel, David V.
    Espinosa, Hugo G.
    Year published
    2014
    Metadata
    Show full item record
    Abstract
    Naturally occurring radio emissions from discrete sferics in the frequency range 500 Hz to 30 kHz have the potential for shallow conductivity profiling beneath the surface of the earth. A dual-channel time-domain receiver was constructed and used over selected geophysical targets. The instrumentation was validated through a comparison with very low-frequency surface impedance measurements from a distant navigation transmitter and 2-D modeling using the impedance method. The multifrequency results were then verified using this 2-D modeling. The skin effect shows the frequency dependence of electromagnetic field strength ...
    View more >
    Naturally occurring radio emissions from discrete sferics in the frequency range 500 Hz to 30 kHz have the potential for shallow conductivity profiling beneath the surface of the earth. A dual-channel time-domain receiver was constructed and used over selected geophysical targets. The instrumentation was validated through a comparison with very low-frequency surface impedance measurements from a distant navigation transmitter and 2-D modeling using the impedance method. The multifrequency results were then verified using this 2-D modeling. The skin effect shows the frequency dependence of electromagnetic field strength dissipation as a signal enters a multilayered earth. Single-frequency methods offer fixed depth conductivity profiles whereas multiple frequencies reveal multiple depth conductivity profiles that can help with 3-D modeling of subsurface features and anomalies. Several electromagnetic techniques offer multiple-frequency operation capitalizing upon this effect however these techniques generally use a local artificial signal source, which leads to near-field distortion effects in the measured data. This method shows significant promise for cost-effective, high-speed, ground-level surface impedance measurements targeting subsurface features down to 100 m.
    View less >
    Journal Title
    IEEE Transactions on Geoscience and Remote Sensing
    Volume
    52
    Issue
    4
    DOI
    https://doi.org/10.1109/TGRS.2013.2257801
    Subject
    Geophysics
    Electrical and electromagnetic methods in geophysics
    Geomatic engineering
    Publication URI
    http://hdl.handle.net/10072/56538
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander